Quality: Think Differently – A World Quality Week 2025 Reflection

As we celebrate World Quality Week 2025 (November 10-14), I find myself reflecting on this year’s powerful theme: “Quality: think differently.” The Chartered Quality Institute’s call to challenge traditional approaches and embrace new ways of thinking resonates deeply with the work I’ve explored throughout the past year on my blog, investigationsquality.com. This theme isn’t just a catchy slogan—it’s an urgent imperative for pharmaceutical quality professionals navigating an increasingly complex regulatory landscape, rapid technological change, and evolving expectations for what quality systems should deliver.

The “think differently” mandate invites us to move beyond compliance theater toward quality systems that genuinely create value, build organizational resilience, and ultimately protect patients. As CQI articulates, this year’s campaign challenges us to reimagine quality not as a department or a checklist, but as a strategic mindset that shapes how we lead, build stakeholder trust, and drive organizational performance. Over the past twelve months, my writing has explored exactly this transformation—from principles-based compliance to falsifiable quality systems, from negative reasoning to causal understanding, and from reactive investigation to proactive risk management.

Let me share how the themes I’ve explored throughout 2024 and 2025 align with World Quality Week’s call to think differently about quality, drawing connections between regulatory realities, organizational challenges, and the future we’re building together.

The Regulatory Imperative: Evolving Expectations Demand New Thinking

Navigating the Evolving Landscape of Validation

My exploration of validation trends began in September 2024 with Navigating the Evolving Landscape of Validation in Biotech,” where I analyzed the 2024 State of Validation report’s key findings. The data revealed compliance burden as the top challenge, with 83% of organizations either using or planning to adopt digital validation systems. But perhaps most tellingly, the report showed that 61% of organizations experienced increased validation workload—a clear signal that business-as-usual approaches aren’t sustainable.

By June 2025, when I revisited this topic in Navigating the Evolving Landscape of Validation in 2025, the landscape had shifted dramatically. Audit readiness had overtaken compliance burden as the primary concern, marking what I called “a fundamental shift in how organizations prioritize regulatory preparedness.” This wasn’t just a statistical fluctuation—it represented validation’s evolution from a tactical compliance activity to a cornerstone of enterprise quality.

The progression from 2024 to 2025 illustrates exactly what “thinking differently” means in practice. Organizations moved from scrambling to meet compliance requirements to building systems that maintain perpetual readiness. Digital validation adoption jumped to 58% of organizations actually using these tools, with 93% either using or planning adoption. More importantly, 63% of early adopters met or exceeded ROI expectations, achieving 50% faster cycle times and reduced deviations.

This transformation demanded new mental models. As I wrote in the 2025 analysis, we need to shift from viewing validation as “a gate you pass through once” to “a state you maintain through ongoing verification.” This perfectly embodies the World Quality Week theme—moving from periodic compliance exercises to integrated systems where quality thinking drives strategy.

Computer System Assurance: Repackaging or Revolution?

One of my most provocative pieces from September 2025, “Computer System Assurance: The Emperor’s New Validation Approach,” challenged the pharmaceutical industry’s breathless embrace of CSA as revolutionary. My central argument: CSA largely repackages established GAMP principles that quality professionals have applied for over two decades, sold back to us as breakthrough innovation by consulting firms.

But here’s where “thinking differently” becomes crucial. The real revolution isn’t CSA versus CSV—it’s the shift from template-driven validation to genuinely risk-based approaches that GAMP has always advocated. Organizations with mature validation programs were already applying critical thinking, scaling validation activities appropriately, and leveraging supplier documentation effectively. They didn’t need CSA to tell them to think critically—they were already living risk-based validation principles.

The danger I identified is that CSA marketing exploits legitimate professional concerns, suggesting existing practices are inadequate when they remain perfectly sufficient. This creates what I call “compliance anxiety”—organizations worry they’re behind, consultants sell solutions to manufactured problems, and actual quality improvement gets lost in the noise.

Thinking differently here means recognizing that system quality exists on a spectrum, not as a binary state. A simple email archiving system doesn’t receive the same validation rigor as a batch manufacturing execution system—not because we’re cutting corners, but because risks are fundamentally different. This spectrum concept has been embedded in GAMP guidance for over a decade. The real work is implementing these principles consistently, not adopting new acronyms.

Regulatory Actions and Learning Opportunities

Throughout 2024-2025, I’ve analyzed numerous FDA warning letters and 483 observations as learning opportunities. In January 2025, A Cautionary Tale from Sanofi’s FDA Warning Letter examined the critical importance of thorough deviation investigations. The warning letter cited persistent CGMP violations, highlighting how organizations that fail to thoroughly investigate deviations miss opportunities to identify root causes, implement effective corrective actions, and prevent recurrence.

My analysis in From PAI to Warning Letter – Lessons from Sanofi traced how leak investigations became a leading indicator of systemic problems. The inspector’s initial clean bill of health for leak deviation investigations suggests either insufficient problems to reveal trends or dangerous complacency. When I published Leaks in Single-Use Manufacturing in February 2025, I explored how functionally closed systems create unique contamination risks that demand heightened vigilance.

The Sanofi case illustrates a critical “think differently” principle: investigations aren’t compliance exercises—they’re learning opportunities. As I emphasized in Scale of Remediation Under a Consent Decree,” even organizations that implement quality improvements with great enthusiasm often see those gains gradually erode. This “quality backsliding” phenomenon happens when improvements aren’t embedded in organizational culture and systematic processes.

The July 2025 Catalent 483 observation, which I analyzed in When 483s Reveal Zemblanity, provided another powerful example. Twenty hair contamination deviations, seven-month delays in supplier notification, and critical equipment failures dismissed as “not impacting SISPQ” revealed what I identified as zemblanity—patterned, preventable misfortune arising from organizational design choices that quietly hardwire failure into operations. This wasn’t bad luck; it was a quality system that had normalized exactly the kinds of deviations that create inspection findings.

Risk Management: From Theater to Science

Causal Reasoning Over Negative Reasoning

In May 2025, I published Causal Reasoning: A Transformative Approach to Root Cause Analysis,” exploring Energy Safety Canada’s white paper on moving from “negative reasoning” to “causal reasoning” in investigations. This framework profoundly aligns with pharmaceutical quality challenges.

Negative reasoning focuses on what didn’t happen—failures to follow procedures, missing controls, absent documentation. It generates findings like “operator failed to follow SOP” or “inadequate training” without understanding why those failures occurred or how to prevent them systematically. Causal reasoning, conversely, asks: What actually happened? Why did it make sense to the people involved at the time? What system conditions made this outcome likely?

This shift transforms investigations from blame exercises into learning opportunities. When we investigate twenty hair contamination deviations using negative reasoning, we conclude that operators failed to follow gowning procedures. Causal reasoning reveals that gowning procedure steps are ambiguous for certain equipment configurations, training doesn’t address real-world challenges, and production pressure creates incentives to rush.

The implications for “thinking differently” are profound. Negative reasoning produces superficial investigations that satisfy compliance requirements but fail to prevent recurrence. Causal reasoning builds understanding of how work actually happens, enabling system-level improvements that increase reliability. As I emphasized in the Catalent 483 analysis, this requires retraining investigators, implementing structured causal analysis tools, and creating cultures where understanding trumps blame.

Reducing Subjectivity in Quality Risk Management

My January 2025 piece Reducing Subjectivity in Quality Risk Management addressed how ICH Q9(R1) tackles persistent challenges with subjective risk assessments. The guideline introduces a “formality continuum” that aligns effort with complexity, and emphasizes knowledge management to reduce uncertainty.

Subjectivity in risk management stems from poorly designed scoring systems, differing stakeholder perceptions, and cognitive biases. The solution isn’t eliminating human judgment—it’s structuring decision-making to minimize bias through cross-functional teams, standardized methodologies, and transparent documentation.

This connects directly to World Quality Week’s theme. Traditional risk management often becomes box-checking: complete the risk assessment template, assign severity and probability scores, document controls, and move on. Thinking differently means recognizing that the quality of risk decisions depends more on the expertise, diversity, and deliberation of the assessment team than on the sophistication of the scoring matrix.

In Inappropriate Uses of Quality Risk Management (August 2024), I explored how organizations misapply risk assessment to justify predetermined conclusions rather than genuinely evaluate alternatives. This “risk management theater” undermines stakeholder trust and creates vulnerability to regulatory scrutiny. Authentic risk management requires psychological safety for raising concerns, leadership commitment to acting on risk findings, and organizational discipline to follow the risk assessment wherever it leads.

The Effectiveness Paradox and Falsifiable Quality Systems

 The Effectiveness Paradox: Why ‘Nothing Bad Happened’ Doesn’t Mean Your Controls Work (August 2025), examined how pharmaceutical organizations struggle to demonstrate that quality controls actually prevent problems rather than simply correlating with good outcomes.

The effectiveness paradox is simple: if your contamination control strategy works, you won’t see contamination. But if you don’t see contamination, how do you know it’s because your strategy works rather than because you got lucky? This creates what philosophers call an unfalsifiable hypothesis—a claim that can’t be tested or disproven.

The solution requires building what I call “falsifiable quality systems”—systems designed to fail predictably in ways that generate learning rather than hiding until catastrophic breakdown. This isn’t celebrating failure; it’s building intelligence into systems so that when failure occurs (as it inevitably will), it happens in controlled, detectable ways that enable improvement.

This radically different way of thinking challenges quality professionals’ instincts. We’re trained to prevent failure, not design for it. But as I discussed on The Risk Revolution podcast, see Recent Podcast Appearance: Risk Revolution (September 2025), systems that never fail either aren’t being tested rigorously enough or aren’t operating in conditions that reveal their limitations. Falsifiable quality thinking embraces controlled challenges, systematic testing, and transparent learning.

Quality Culture: The Foundation of Everything

Complacency Cycles and Cultural Erosion

In February 2025, Complacency Cycles and Their Impact on Quality Culture explored how complacency operates as a silent saboteur, eroding innovation and undermining quality culture foundations. I identified a four-phase cycle: stagnation (initial success breeds overconfidence), normalization of risk (minor deviations become habitual), crisis trigger (accumulated oversights culminate in failures), and temporary vigilance (post-crisis measures that fade without systemic change).

This cycle threatens every quality culture, regardless of maturity. Even organizations with strong quality systems can drift into complacency when success creates overconfidence or when operational pressures gradually normalize risk tolerance. The NASA Columbia disaster exemplified how normalized risk-taking eroded safety protocols over time—a pattern pharmaceutical quality professionals ignore at their peril.

Breaking complacency cycles demands what I call “anti-complacency practices”—systematic interventions that institutionalize vigilance. These include continuous improvement methodologies integrated into workflows, real-time feedback mechanisms that create visible accountability, and immersive learning experiences that make risks tangible. A medical device company’s “Harm Simulation Lab” that I described exposed engineers to consequences of design oversights, leading participants to identify 112% more risks in subsequent reviews compared to conventional training.

Thinking differently about quality culture means recognizing it’s not something you build once and maintain through slogans and posters. Culture requires constant nurturing through leadership behaviors, resource allocation, communication patterns, and the thousand small decisions that signal what the organization truly values. As I emphasized, quality culture exists in perpetual tension with complacency—the former pulling toward excellence, the latter toward entropy.

Equanimity: The Overlooked Foundation

Equanimity: The Overlooked Foundation of Quality Culture (March 2025) explored a dimension rarely discussed in quality literature: the role of emotional stability and balanced judgment in quality decision-making. Equanimity—mental calmness and composure in difficult situations—enables quality professionals to respond to crises, navigate organizational politics, and make sound judgments under pressure.

Quality work involves constant pressure: production deadlines, regulatory scrutiny, deviation investigations, audit findings, and stakeholder conflicts. Without equanimity, these pressures trigger reactive decision-making, defensive behaviors, and risk-averse cultures that stifle improvement. Leaders who panic during audits create teams that hide problems. Professionals who personalize criticism build systems focused on blame rather than learning.

Cultivating equanimity requires deliberate practice: mindfulness approaches that build emotional regulation, psychological safety that enables vulnerability, and organizational structures that buffer quality decisions from operational pressure. When quality professionals can maintain composure while investigating serious deviations, when they can surface concerns without fear of blame, and when they can engage productively with regulators despite inspection stress—that’s when quality culture thrives.

This represents a profoundly different way of thinking about quality leadership. We typically focus on technical competence, regulatory knowledge, and process expertise. But the most technically brilliant quality professional who loses composure under pressure, who takes criticism personally, or who cannot navigate organizational politics will struggle to drive meaningful improvement. Equanimity isn’t soft skill window dressing—it’s foundational to quality excellence.

Building Operational Resilience Through Cognitive Excellence

My August 2025 piece Building Operational Resilience Through Cognitive Excellence connected quality culture to operational resilience by examining how cognitive limitations and organizational biases inhibit comprehensive hazard recognition. Research demonstrates that organizations with strong risk management cultures are significantly less likely to experience damaging operational risk events.

The connection is straightforward: quality culture determines how organizations identify, assess, and respond to risks. Organizations with mature cultures demonstrate superior capability in preventing issues, detecting problems early, and implementing effective corrective actions addressing root causes. Recent FDA warning letters consistently identify cultural deficiencies underlying technical violations—insufficient Quality Unit authority, inadequate management commitment, systemic failures in risk identification and escalation.

Cognitive excellence in quality requires multiple capabilities: pattern recognition that identifies weak signals before they become crises, systems thinking that traces cascading effects, and decision-making frameworks that manage uncertainty without paralysis. Organizations build these capabilities through training, structured methodologies, cross-functional collaboration, and cultures that value inquiry over certainty.

This aligns perfectly with World Quality Week’s call to think differently. Traditional quality approaches focus on documenting what we know, following established procedures, and demonstrating compliance. Cognitive excellence demands embracing what we don’t know, questioning established assumptions, and building systems that adapt as understanding evolves. It’s the difference between quality systems that maintain stability and quality systems that enable growth.

The Digital Transformation Imperative

Throughout 2024-2025, I’ve tracked digital transformation’s impact on pharmaceutical quality. The Draft EU GMP Chapter 4 (2025), which I analyzed in multiple posts, formalizes ALCOA++ principles as the foundation for data integrity. This represents the first comprehensive regulatory codification of expanded data integrity principles: Attributable, Legible, Contemporaneous, Original, Accurate, Complete, Consistent, Enduring, and Available.

In Draft Annex 11 Section 10: ‘Handling of Data‘” (July 2025), I emphasized that bringing controls into compliance with Section 10 is a strategic imperative. Organizations that move fastest will spend less effort in the long run, while those who delay face mounting technical debt and compliance risk. The draft Annex 11 introduces sophisticated requirements for identity and access management (IAM), representing what I called “a complete philosophical shift from ‘trust but verify’ to ‘prove everything, everywhere, all the time.'”

The validation landscape shows similar digital acceleration. As I documented in the 2025 State of Validation analysis, 93% of organizations either use or plan to adopt digital validation systems. Continuous Process Verification has emerged as a cornerstone, with IoT sensors and real-time analytics enabling proactive quality management. By aligning with ICH Q10’s lifecycle approach, CPV transforms validation from compliance exercise to strategic asset.

But technology alone doesn’t constitute “thinking differently.” In Section 4 of Draft Annex 11: Quality Risk Management (August 2025), I argued that the section serves as philosophical and operational backbone for everything else in the regulation. Every validation decision must be traceable to specific risk assessments considering system characteristics and GMP role. This risk-based approach rewards organizations investing in comprehensive assessment while penalizing those relying on generic templates.

The key insight: digital tools amplify whatever thinking underlies their use. Digital validation systems applied with template mentality simply automate bad practices. But digital tools supporting genuinely risk-based, scientifically justified approaches enable quality management impossible with paper systems—real-time monitoring, predictive analytics, integrated data analysis, and adaptive control strategies.

Artificial Intelligence: Promise and Peril

In September 2025, The Expertise Crisis: Why AI’s War on Entry-Level Jobs Threatens Quality’s Future explored how pharmaceutical organizations rushing to harness AI risk creating an expertise crisis threatening quality foundations. Research showing 13% decline in entry-level opportunities for young workers since AI deployment reveals a dangerous trend.

The false economy of AI substitution misunderstands how expertise develops. Senior risk management professionals reviewing contamination events can quickly identify failure modes because they developed foundational expertise through years investigating routine deviations, participating in CAPA teams, and learning to distinguish significant risks from minor variations. When AI handles initial risk assessments and senior professionals review only outputs, we create expertise hollowing—organizations that appear capable superficially but lack deep competency for complex challenges.

This connects to World Quality Week’s theme through a critical question: Are we thinking differently about quality in ways that build capability, or are we simply automating away the learning opportunities that create expertise? As I argued, the choice between eliminating entry-level positions and redesigning them to maximize learning value while leveraging AI appropriately will determine whether we have quality professionals capable of maintaining systems in 2035.

The regulatory landscape is adapting. My July 2025 piece Regulatory Changes I am Watching documented multiple agencies publishing AI guidance. The EMA’s reflection paper, MHRA’s AI regulatory strategy, and EFPIA’s position on AI in GMP manufacturing all emphasize risk-based approaches requiring transparency, validation, and ongoing performance monitoring. The message is clear: AI is a tool requiring human oversight, not a replacement for human judgment.

Data Integrity: The Non-Negotiable Foundation

ALCOA++ as Strategic Asset

Data integrity has been a persistent theme throughout my writing. As I emphasized in the 2025 validation analysis, “we are only as good as our data” encapsulates the existential reality of regulated industries. The ALCOA++ framework provides architectural blueprint for embedding data integrity into every quality system layer.

In Pillars of Good Data (October 2024), I explored how data governance, data quality, and data integrity work together creating robust data management. Data governance establishes policies and accountabilities. Data quality ensures fitness for use. Data integrity ensures trustworthiness through controls preventing and detecting data manipulation, loss, or compromise.

These pillars support continuous improvement cycles: governance policies inform quality and integrity standards, assessments provide feedback on governance effectiveness, and feedback refines policies enhancing practices. Organizations treating these concepts as separate compliance activities miss the synergistic relationship enabling truly robust data management.

The Draft Chapter 4 analysis revealed how data integrity requirements have evolved from general principles to specific technical controls. Hybrid record systems (paper plus electronic) require demonstrable tamper-evidence through hashes or equivalent mechanisms. Electronic signature requirements demand multi-factor authentication, time-zoned audit trails, and explicit non-repudiation provisions. Open systems like SaaS platforms require compliance with standards like eIDAS for trusted digital providers.

Thinking differently about data integrity means moving from reactive remediation (responding to inspector findings) to proactive risk assessment (identifying vulnerabilities before they’re exploited). In my analysis of multiple warning letters throughout 2024-2025, data integrity failures consistently appeared alongside other quality system weaknesses—inadequate investigations, insufficient change control, poor CAPA effectiveness. Data integrity isn’t standalone compliance—it’s quality system litmus test revealing organizational discipline, technical capability, and cultural commitment.

The Problem with High-Level Requirements

In August 2025, The Problem with High-Level Regulatory User Requirements examined why specifying “Meet Part 11” as a user requirement is bad form. High-level requirements like this don’t tell implementers what the system must actually do—they delegate regulatory interpretation to vendors and implementation teams without organization-specific context.

Effective requirements translate regulatory expectations into specific, testable, implementable system behaviors: “System shall enforce unique user IDs that cannot be reassigned,” “System shall record complete audit trail including user ID, date, time, action type, and affected record identifier,” “System shall prevent modification of closed records without documented change control approval.” These requirements can be tested, verified, and traced to specific regulatory citations.

This illustrates broader “think differently” principle: compliance isn’t achieved by citing regulations—it’s achieved by understanding what regulations require in your specific context and building capabilities delivering those requirements. Organizations treating compliance as regulatory citation exercise miss the substance of what regulation demands. Deep understanding enables defensible, effective compliance; superficial citation creates vulnerability to inspectional findings and quality failures.

Process Excellence and Organizational Design

Process Mapping and Business Process Management

Between November 2024 and May 2025, I published a series exploring process management fundamentals. Process Mapping as a Scaling Solution (part 1) and subsequent posts examined how process mapping, SIPOC analysis, value chain models, and BPM frameworks enable organizational scaling while maintaining quality.

The key insight: BPM functions as both adaptive framework and prescriptive methodology, with process architecture connecting strategic vision to operational reality. Organizations struggling with quality issues often lack clear process understanding—roles ambiguous, handoffs undefined, decision authority unclear. Process mapping makes implicit work visible, enabling systematic improvement.

But mapping alone doesn’t create excellence. As I explored in SIPOC (May 2025), the real power comes from integrating multiple perspectives—strategic (value chain), operational (SIPOC), and tactical (detailed process maps)—into coherent understanding of how work flows. This enables targeted interventions: if raw material shortages plague operations, SIPOC analysis reveals supplier relationships and bottlenecks requiring operational-layer solutions. If customer satisfaction declines, value chain analysis identifies strategic-layer misalignment requiring service redesign.

This connects to “thinking differently” through systems thinking. Traditional quality approaches focus on local optimization—making individual departments or processes more efficient. Process architecture thinking recognizes that local optimization can create global problems if process interdependencies aren’t understood. Sometimes making one area more efficient creates bottlenecks elsewhere or reduces overall system effectiveness. Systems-level understanding enables genuine optimization.

Organizational Structure and Competency

Several pieces explored organizational excellence foundations. Building a Competency Framework for Quality (April 2025) examined how defining clear competencies for quality roles enables targeted development, objective assessment, and succession planning. Without competency frameworks, training becomes ad hoc, capability gaps remain invisible, and organizational knowledge concentrates in individuals rather than systems.

The Minimal Viable Risk Assessment Team (June 2025) addressed what ineffective risk management actually costs. Beyond obvious impacts like unidentified risks and poorly prioritized resources, ineffective risk management generates rework, creates regulatory findings, erodes stakeholder trust, and perpetuates organizational fragility. Building minimum viable teams requires clear role definitions, diverse expertise, defined decision-making processes, and systematic follow-through.

In The GAMP5 System Owner and Process Owner and Beyond, I explored how defining accountable individuals in processes is critical for quality system effectiveness. System owners and process owners provide single points of accountability, enable efficient decision-making, and ensure processes have champions driving improvement. Without clear ownership, responsibilities diffuse, problems persist, and improvement initiatives stall.

These organizational elements—competency frameworks, team structures, clear accountabilities—represent infrastructure enabling quality excellence. Organizations can have sophisticated processes and advanced technologies, but without people who know what they’re doing, teams structured for success, and clear accountability for outcomes, quality remains aspirational rather than operational.

Looking Forward: The Quality Professional’s Mandate

As World Quality Week 2025 challenges us to think differently about quality, what does this mean practically for pharmaceutical quality professionals?

First, it means embracing discomfort with certainty. Quality has traditionally emphasized control, predictability, and adherence to established practices. Thinking differently requires acknowledging uncertainty, questioning assumptions, and adapting as we learn. This doesn’t mean abandoning scientific rigor—it means applying that rigor to examining our own assumptions and biases.

Second, it demands moving from compliance focus to value creation. Compliance is necessary but insufficient. As I’ve argued throughout the year, quality systems should protect patients, yes—but also enable innovation, build organizational capability, and create competitive advantage. When quality becomes enabling force rather than constraint, organizations thrive.

Third, it requires building systems that learn. Traditional quality approaches document what we know and execute accordingly. Learning quality systems actively test assumptions, detect weak signals, adapt to new information, and continuously improve understanding. Falsifiable quality systems, causal investigation approaches, and risk-based thinking all contribute to learning organizational capacity.

Fourth, it necessitates cultural transformation alongside technical improvement. Every technical quality challenge has cultural dimensions—how people communicate, how decisions get made, how problems get raised, how learning happens. Organizations can implement sophisticated technologies and advanced methodologies, but without cultures supporting those tools, sustainable improvement remains elusive.

Finally, thinking differently about quality means embracing our role as organizational change agents. Quality professionals can’t wait for permission to improve systems, challenge assumptions, or drive transformation. We must lead these changes, making the case for new approaches, building coalitions, and demonstrating value. World Quality Week provides platform for this leadership—use it.

The Quality Beat

In my August 2025 piece Finding Rhythm in Quality Risk Management,” I explored how predictable rhythms in quality activities—regular assessment cycles, structured review processes, systematic verification—create stable foundations enabling innovation. The paradox is that constraint enables creativity—teams knowing they have regular, structured opportunities for risk exploration are more willing to raise difficult questions and propose unconventional solutions.

This captures what thinking differently about quality truly means. It’s not abandoning structure for chaos, or replacing discipline with improvisation. It’s finding our quality beat—the rhythm at which our organizations can sustain excellence, the cadence enabling both stability and adaptation, the tempo at which learning and execution harmonize.

World Quality Week 2025 invites us to discover that rhythm in our own contexts. The themes I’ve explored throughout 2024 and 2025—from causal reasoning to falsifiable systems, from complacency cycles to cognitive excellence, from digital transformation to expertise development—all contribute to quality excellence that goes beyond compliance to create genuine value.

As we celebrate the people, ideas, and practices shaping quality’s future, let’s commit to more than celebration. Let’s commit to transformation—in our systems, our organizations, our profession, and ourselves. Quality’s golden thread runs throughout business because quality professionals weave it there, one decision at a time, one system at a time, one transformation at a time.

The future of quality isn’t something that happens to us. It’s something we create by thinking differently, acting deliberately, and leading courageously. Let’s make World Quality Week 2025 the moment we choose that future together.

Sidney Dekker: The Safety Scientist Who Influences How I Think About Quality

Over the past decades, as I’ve grown and now led quality organizations in biotechnology, I’ve encountered many thinkers who’ve shaped my approach to investigation and risk management. But few have fundamentally altered my perspective like Sidney Dekker. His work didn’t just add to my toolkit—it forced me to question some of my most basic assumptions about human error, system failure, and what it means to create genuinely effective quality systems.

Dekker’s challenge to move beyond “safety theater” toward authentic learning resonates deeply with my own frustrations about quality systems that look impressive on paper but fail when tested by real-world complexity.

Why Dekker Matters for Quality Leaders

Professor Sidney Dekker brings a unique combination of academic rigor and operational experience to safety science. As both a commercial airline pilot and the Director of the Safety Science Innovation Lab at Griffith University, he understands the gap between how work is supposed to happen and how it actually gets done. This dual perspective—practitioner and scholar—gives his critiques of traditional safety approaches unusual credibility.

But what initially drew me to Dekker’s work wasn’t his credentials. It was his ability to articulate something I’d been experiencing but couldn’t quite name: the growing disconnect between our increasingly sophisticated compliance systems and our actual ability to prevent quality problems. His concept of “drift into failure” provided a framework for understanding why organizations with excellent procedures and well-trained personnel still experience systemic breakdowns.

The “New View” Revolution

Dekker’s most fundamental contribution is what he calls the “new view” of human error—a complete reframing of how we understand system failures. Having spent years investigating deviations and CAPAs, I can attest to how transformative this shift in perspective can be.

The Traditional Approach I Used to Take:

  • Human error causes problems
  • People are unreliable; systems need protection from human variability
  • Solutions focus on better training, clearer procedures, more controls

Dekker’s New View That Changed My Practice:

  • Human error is a symptom of deeper systemic issues
  • People are the primary source of system reliability, not the threat to it
  • Variability and adaptation are what make complex systems work

This isn’t just academic theory—it has practical implications for every investigation I lead. When I encounter “operator error” in a deviation investigation, Dekker’s framework pushes me to ask different questions: What made this action reasonable to the operator at the time? What system conditions shaped their decision-making? How did our procedures and training actually perform under real-world conditions?

This shift aligns perfectly with the causal reasoning approaches I’ve been developing on this blog. Instead of stopping at “failure to follow procedure,” we dig into the specific mechanisms that drove the event—exactly what Dekker’s view demands.

Drift Into Failure: Why Good Organizations Go Bad

Perhaps Dekker’s most powerful concept for quality leaders is “drift into failure”—the idea that organizations gradually migrate toward disaster through seemingly rational local decisions. This isn’t sudden catastrophic failure; it’s incremental erosion of safety margins through competitive pressure, resource constraints, and normalized deviance.

I’ve seen this pattern repeatedly. For example, a cleaning validation program starts with robust protocols, but over time, small shortcuts accumulate: sampling points that are “difficult to access” get moved, hold times get shortened when production pressure increases, acceptance criteria get “clarified” in ways that gradually expand limits.

Each individual decision seems reasonable in isolation. But collectively, they represent drift—a gradual migration away from the original safety margins toward conditions that enable failure. The contamination events and data integrity issues that plague our industry often represent the endpoint of these drift processes, not sudden breakdowns in otherwise reliable systems.

Beyond Root Cause: Understanding Contributing Conditions

Traditional root cause analysis seeks the single factor that “caused” an event, but complex system failures emerge from multiple interacting conditions. The take-the-best heuristic I’ve been exploring on this blog—focusing on the most causally powerful factor—builds directly on Dekker’s insight that we need to understand mechanisms, not hunt for someone to blame.

When I investigate a failure now, I’m not looking for THE root cause. I’m trying to understand how various factors combined to create conditions for failure. What pressures were operators experiencing? How did procedures perform under actual conditions? What information was available to decision-makers? What made their actions reasonable given their understanding of the situation?

This approach generates investigations that actually help prevent recurrence rather than just satisfying regulatory expectations for “complete” investigations.

Just Culture: Moving Beyond Blame

Dekker’s evolution of just culture thinking has been particularly influential in my leadership approach. His latest work moves beyond simple “blame-free” environments toward restorative justice principles—asking not “who broke the rule” but “who was hurt and how can we address underlying needs.”

This shift has practical implications for how I handle deviations and quality events. Instead of focusing on disciplinary action, I’m asking: What systemic conditions contributed to this outcome? What support do people need to succeed? How can we address the underlying vulnerabilities this event revealed?

This doesn’t mean eliminating accountability—it means creating accountability systems that actually improve performance rather than just satisfying our need to assign blame.

Safety Theater: The Problem with Compliance Performance

Dekker’s most recent work on “safety theater” hits particularly close to home in our regulated environment. He defines safety theater as the performance of compliance when under surveillance that retreats to actual work practices when supervision disappears.

I’ve watched organizations prepare for inspections by creating impressive documentation packages that bear little resemblance to how work actually gets done. Procedures get rewritten to sound more rigorous, training records get updated, and everyone rehearses the “right” answers for auditors. But once the inspection ends, work reverts to the adaptive practices that actually make operations function.

This theater emerges from our desire for perfect, controllable systems, but it paradoxically undermines genuine safety by creating inauthenticity. People learn to perform compliance rather than create genuine safety and quality outcomes.

The falsifiable quality systems I’ve been advocating on this blog represent one response to this problem—creating systems that can be tested and potentially proven wrong rather than just demonstrated as compliant.

Six Practical Takeaways for Quality Leaders

After years of applying Dekker’s insights in biotechnology manufacturing, here are the six most practical lessons for quality professionals:

1. Treat “Human Error” as the Beginning of Investigation, Not the End

When investigations conclude with “human error,” they’ve barely started. This should prompt deeper questions: Why did this action make sense? What system conditions shaped this decision? What can we learn about how our procedures and training actually perform under pressure?

2. Understand Work-as-Done, Not Just Work-as-Imagined

There’s always a gap between procedures (work-as-imagined) and actual practice (work-as-done). Understanding this gap and why it exists is more valuable than trying to force compliance with unrealistic procedures. Some of the most important quality improvements I’ve implemented came from understanding how operators actually solve problems under real conditions.

3. Measure Positive Capacities, Not Just Negative Events

Traditional quality metrics focus on what didn’t happen—no deviations, no complaints, no failures. I’ve started developing metrics around investigation quality, learning effectiveness, and adaptive capacity rather than just counting problems. How quickly do we identify and respond to emerging issues? How effectively do we share learning across sites? How well do our people handle unexpected situations?

4. Create Psychological Safety for Learning

Fear and punishment shut down the flow of safety-critical information. Organizations that want to learn from failures must create conditions where people can report problems, admit mistakes, and share concerns without fear of retribution. This is particularly challenging in our regulated environment, but it’s essential for moving beyond compliance theater toward genuine learning.

5. Focus on Contributing Conditions, Not Root Causes

Complex failures emerge from multiple interacting factors, not single root causes. The take-the-best approach I’ve been developing helps identify the most causally powerful factor while avoiding the trap of seeking THE cause. Understanding mechanisms is more valuable than finding someone to blame.

6. Embrace Adaptive Capacity Instead of Fighting Variability

People’s ability to adapt and respond to unexpected conditions is what makes complex systems work, not a threat to be controlled. Rather than trying to eliminate human variability through ever-more-prescriptive procedures, we should understand how that variability creates resilience and design systems that support rather than constrain adaptive problem-solving.

Connection to Investigation Excellence

Dekker’s work provides the theoretical foundation for many approaches I’ve been exploring on this blog. His emphasis on testable hypotheses rather than compliance theater directly supports falsifiable quality systems. His new view framework underlies the causal reasoning methods I’ve been developing. His focus on understanding normal work, not just failures, informs my approach to risk management.

Most importantly, his insistence on moving beyond negative reasoning (“what didn’t happen”) to positive causal statements (“what actually happened and why”) has transformed how I approach investigations. Instead of documenting failures to follow procedures, we’re understanding the specific mechanisms that drove events—and that makes all the difference in preventing recurrence.

Essential Reading for Quality Leaders

If you’re leading quality organizations in today’s complex regulatory environment, these Dekker works are essential:

Start Here:

For Investigation Excellence:

  • Behind Human Error (with Woods, Cook, et al.) – Comprehensive framework for moving beyond blame
  • Drift into Failure – Understanding how good organizations gradually deteriorate

For Current Challenges:

The Leadership Challenge

Dekker’s work challenges us as quality leaders to move beyond the comfortable certainty of compliance-focused approaches toward the more demanding work of creating genuine learning systems. This requires admitting that our procedures and training might not work as intended. It means supporting people when they make mistakes rather than just punishing them. It demands that we measure our success by how well we learn and adapt, not just how well we document compliance.

This isn’t easy work. It requires the kind of organizational humility that Amy Edmondson and other leadership researchers emphasize—the willingness to be proven wrong in service of getting better. But in my experience, organizations that embrace this challenge develop more robust quality systems and, ultimately, better outcomes for patients.

The question isn’t whether Sidney Dekker is right about everything—it’s whether we’re willing to test his ideas and learn from the results. That’s exactly the kind of falsifiable approach that both his work and effective quality systems demand.

Material Tracking Models in Continuous Manufacturing: Development, Validation, and Lifecycle Management

Continuous manufacturing represents one of the most significant paradigm shifts in pharmaceutical production since the adoption of Good Manufacturing Practices. Unlike traditional batch manufacturing, where discrete lots move sequentially through unit operations with clear temporal and spatial boundaries, continuous manufacturing integrates operations into a flowing system where materials enter, transform, and exit in a steady state. This integration creates extraordinary opportunities for process control, quality assurance, and operational efficiency—but it also creates a fundamental challenge that batch manufacturing never faced: how do you track material identity and quality when everything is always moving?

Material Tracking (MT) models answer that question. These mathematical models, typically built on Residence Time Distribution (RTD) principles, enable manufacturers to predict where specific materials are within the continuous system at any given moment. More importantly, they enable the real-time decisions that continuous manufacturing demands: when to start collecting product, when to divert non-conforming material, which raw material lots contributed to which finished product units, and whether the system has reached steady state after a disturbance.

For organizations implementing continuous manufacturing, MT models are not optional enhancements or sophisticated add-ons. They are regulatory requirements. ICH Q13 explicitly addresses material traceability and diversion as essential elements of continuous manufacturing control strategies. FDA guidance on continuous manufacturing emphasizes that material tracking enables the batch definition and lot traceability that regulators require for product recalls, complaint investigations, and supply chain integrity. When an MT model informs GxP decisions—such as accepting or rejecting material for final product—it becomes a medium-impact model under ICH Q13, subject to validation requirements commensurate with its role in the control strategy.

This post examines what MT models are, what they’re used for, how to validate them according to regulatory expectations, and how to maintain their validated state through continuous verification. The stakes are high: MT models built on data from non-qualified equipment, validated through inadequate protocols, or maintained without ongoing verification create compliance risk, product quality risk, and ultimately patient safety risk. Understanding the regulatory framework and validation lifecycle for these models is essential for any organization moving from batch to continuous manufacturing—or for any quality professional evaluating whether proposed shortcuts during model development will survive regulatory scrutiny.

What is a Material Tracking Model?

A Material Tracking model is a mathematical representation of how materials flow through a continuous manufacturing system over time. At its core, an MT model answers a deceptively simple question: if I introduce material X into the system at time T, when and where will it exit, and what will be its composition?

The mathematical foundation for most MT models is Residence Time Distribution (RTD). RTD characterizes how long individual parcels of material spend within a unit operation or integrated line. It’s a probability distribution: some material moves through quickly (following the fastest flow paths), some material lingers (trapped in dead zones or recirculation patterns), and most material falls somewhere in between. The shape of this distribution—narrow and symmetric for plug flow, broad and tailed for well-mixed systems—determines how disturbances propagate, how quickly composition changes appear downstream, and how much material must be diverted when problems occur.

RTD can be characterized through several methodologies, each with distinct advantages and regulatory considerations. Tracer studies introduce a detectable substance (often a colored dye, a UV-absorbing compound, or in some cases the API itself at altered concentration) into the feed stream and measure its appearance at the outlet over time. The resulting concentration-time curve is the RTD. Step-change testing alters feed composition quantitatively and tracks the response, avoiding the need for external tracers. In silico modeling uses computational fluid dynamics or discrete element modeling to simulate flow based on equipment geometry, material properties, and operating conditions, then validates predictions against experimental data.

The methodology matters for validation. Tracer studies using materials dissimilar to the actual product require justification that the tracer’s flow behavior represents the commercial material. In silico models require demonstrated accuracy across the operating range and rigorous sensitivity analysis to understand which input parameters most influence predictions. Step-change approaches using the actual API or excipients provide the most representative data but may be constrained by analytical method capabilities or material costs during development.

Once RTD is characterized for individual unit operations, MT models integrate these distributions to track material through the entire line. For a continuous direct compression line, this might involve linking feeder RTDs → blender RTD → tablet press RTD, accounting for material transport between units. For biologics, it could involve perfusion bioreactor → continuous chromatography → continuous viral inactivation, with each unit’s RTD contributing to the overall system dynamics.

Material Tracking vs Material Traceability: A Critical Distinction

The terms are often used interchangeably, but they represent different capabilities. Material tracking is the real-time, predictive function: the MT model tells you right now where material is in the system and what its composition should be based on upstream inputs and process parameters. This enables prospective decisions: start collecting product, divert to waste, adjust feed rates.

Material traceability is the retrospective, genealogical function: after production, you can trace backwards from a specific finished product unit to identify which raw material lots, at what quantities, contributed to that unit. This enables regulatory compliance: lot tracking for recalls, complaint investigations, and supply chain documentation.

MT models enable both functions. The same RTD equations that predict real-time composition also allow backwards calculation to assign raw material lots to finished goods. But the data requirements differ. Real-time tracking demands low-latency calculations and robust model performance under transient conditions. Traceability demands comprehensive documentation, validated data storage, and demonstrated accuracy across the full range of commercial operation.

Why MT Models Are Medium-Impact Under ICH Q13

ICH Q13 categorizes process models by their impact on product quality and the consequences of model failure. Low-impact models are used for monitoring or optimization but don’t directly control product acceptance. Medium-impact models inform control strategy decisions, including material diversion, feed-forward control, or batch disposition. High-impact models serve as the sole basis for accepting product in the absence of other testing (e.g., as surrogate endpoints for release testing).

MT models typically fall into the medium-impact category because they inform diversion decisions—when to stop collecting product and when to restart—and batch definition—which material constitutes a traceable lot. These are GxP decisions with direct quality implications. If the model fails (predicts steady state when the system is disturbed, or calculates incorrect material composition), non-conforming product could reach patients.

Medium-impact models require documented development rationale, validation against experimental data using statistically sound approaches, and ongoing performance monitoring. They do not require the exhaustive worst-case testing demanded of high-impact models, but they cannot be treated as informal calculations or unvalidated spreadsheets. The validation must be commensurate with risk: sufficient to provide high assurance that model predictions support reliable GxP decisions, documented to demonstrate regulatory compliance, and maintained to ensure the model remains accurate as the process evolves.

What Material Tracking Models Are Used For

MT models serve multiple functions in continuous manufacturing, each with distinct regulatory and operational implications. Understanding these use cases clarifies why model validation matters and what the consequences of model failure might be.

Material Traceability for Regulatory Compliance

Pharmaceutical regulations require that manufacturers maintain records linking raw materials to finished products. When a raw material lot is found to be contaminated, out of specification, or otherwise compromised, the manufacturer must identify all affected finished goods and initiate appropriate actions—potentially including recall. In batch manufacturing, this traceability is straightforward: batch records document which raw material lots were charged to which batch, and the batch number appears on the finished product label.

Continuous manufacturing complicates this picture. There are no discrete batches in the traditional sense. Raw material hoppers are refilled on the fly. Multiple lots of API or excipients may be in the system simultaneously at different positions along the line. A single tablet emerging from the press contains contributions from materials that entered the system over a span of time determined by the RTD.

MT models solve this by calculating, for each unit of finished product, the probabilistic contribution of each raw material lot. Using the RTD and timestamps for when each lot entered the system, the model assigns a percentage contribution: “Tablet X contains 87% API Lot A, 12% API Lot B, 1% API Lot C.” This enables regulatory-compliant traceability. If API Lot B is later found to be contaminated, the manufacturer can identify all tablets with non-zero contribution from that lot and calculate whether the concentration of contaminant exceeds safety thresholds.

This application demands validated accuracy of the MT model across the full commercial operating range. A model that slightly misestimates RTD during steady-state operation might incorrectly assign lot contributions, potentially failing to identify affected product during a recall or unnecessarily recalling unaffected material. The validation must demonstrate that lot assignments are accurate, documented to withstand regulatory scrutiny, and maintained through change control when the process or model changes.

Diversion of Non-Conforming Material

Continuous processes experience transient upsets: startup and shutdown, feed interruptions, equipment fluctuations, raw material variability. During these periods, material may be out of specification even though the process quickly returns to control. In batch manufacturing, the entire batch would be rejected or reworked. In continuous manufacturing, only the affected material needs to be diverted, but you must know which material was affected and when it exits the system.

This is where MT models become operationally critical. When a disturbance occurs—say, a feeder calibration drift causes API concentration to drop below spec for 45 seconds—the MT model calculates when the low-API material will reach the tablet press (accounting for blender residence time and transport delays) and how long diversion must continue (until all affected material clears the system). The model triggers automated diversion valves, routes material to waste, and signals when product collection can resume.

The model’s accuracy directly determines product quality. If the model underestimates residence time, low-API tablets reach finished goods. If it overestimates, excess conforming material is unnecessarily diverted—operationally wasteful but not a compliance failure. The asymmetry means validation must demonstrate conservative accuracy: the model should err toward over-diversion rather than under-diversion, with acceptance criteria that account for this risk profile.

ICH Q13 explicitly requires that control strategies for continuous manufacturing address diversion, and that the amount diverted account for RTD, process dynamics, and measurement uncertainty. This isn’t optional. MT models used for diversion decisions must be validated, and the validation must address worst-case scenarios: disturbances at different process positions, varying disturbance durations, and the impact of simultaneous disturbances in multiple unit operations.

Batch Definition and Lot Tracking

Regulatory frameworks define “batch” or “lot” as a specific quantity of material produced in a defined process such that it is expected to be homogeneous. Continuous manufacturing challenges this definition because the process never stops—material is continuously added and removed. How do you define a batch when there are no discrete temporal boundaries?

ICH Q13 allows flexible batch definitions for continuous manufacturing: based on time (e.g., one week of production), quantity (e.g., 100,000 tablets), or process state (e.g., the material produced while all process parameters were within validated ranges during a single campaign). The MT model enables all three approaches by tracking when material entered and exited the system, its composition, and its relationship to process parameters.

For time-based batches, the model calculates which raw material lots contributed to the product collected during the defined period. For quantity-based batches, it tracks accumulation until the target amount is reached and documents the genealogy. For state-based batches, it links finished product to the process conditions experienced during manufacturing—critical for real-time release testing.

The validation requirement here is demonstrated traceability accuracy. The model must correctly link upstream events (raw material charges, process parameters) to downstream outcomes (finished product composition). This is typically validated by comparing model predictions to measured tablet assay across multiple deliberate feed changes, demonstrating that the model correctly predicts composition shifts within defined acceptance criteria.

Material Tracking in Continuous Upstream: Perfusion Bioreactors

Perfusion culture represents the upstream foundation of continuous biologics manufacturing. Unlike fed-batch bioreactors where material residence time is defined by batch duration (typically 10-14 days for mAb production), perfusion systems operate at steady state with continuous material flow. Fresh media enters, depleted media (containing product) exits through cell retention devices, and cells remain in the bioreactor at controlled density through a cell bleed stream.

The Material Tracking Challenge in Perfusion

In perfusion systems, product residence time distribution becomes critical for quality. Therapeutic proteins experience post-translational modifications, aggregation, fragmentation, and degradation as a function of time spent in the bioreactor environment. The longer a particular antibody molecule remains in culture—exposed to proteases, reactive oxygen species, temperature fluctuations, and pH variations—the greater the probability of quality attribute changes.

Traditional fed-batch systems have inherently broad product RTD: the first antibody secreted on Day 1 remains in the bioreactor until harvest on Day 14, while antibodies produced on Day 13 are harvested within 24 hours. This 13-day spread in residence time contributes to batch-to

Process Control and Disturbance Management

Beyond material disposition, MT models enable advanced process control. Feed-forward control uses upstream measurements (e.g., API concentration in the blend) combined with the RT model to predict downstream quality (e.g., tablet assay) and adjust process parameters proactively. Feedback control uses downstream measurements to infer upstream conditions that occurred residence-time ago, enabling diagnosis and correction.

For example, if tablet assay begins trending low, the MT model can “look backwards” through the RTD to identify when the low-assay material entered the blender, correlate that time with feeder operation logs, and identify whether a specific feeder experienced a transient upset. This accelerates root cause investigations and enables targeted interventions rather than global process adjustments.

This application highlights why MT models must be validated across dynamic conditions, not just steady state. Process control operates during transients, startups, and disturbances—exactly when model accuracy is most critical and most difficult to achieve. Validation must include challenge studies that deliberately create disturbances and demonstrate that the model correctly predicts their propagation through the system.

Real-Time Release Testing Enablement

Real-Time Release Testing (RTRT) is the practice of releasing product based on process data and real-time measurements rather than waiting for end-product testing. ICH Q13 describes RTRT as a “can” rather than a “must” for continuous manufacturing, but many organizations pursue it for the operational advantages: no waiting for assay results, immediate batch disposition, reduced work-in-process inventory.

MT models are foundational for RTRT because they link in-process measurements (taken at accessible locations, often mid-process) to finished product quality (the attribute regulators care about). An NIR probe measuring API concentration in the blend feed frame, combined with an MT model predicting how that material transforms during compression and coating, enables real-time prediction of final tablet assay without destructive testing.

But this elevates the MT model to potentially high-impact status if it becomes the sole basis for release. Validation requirements intensify: the model must be validated against the reference method (HPLC, dissolution testing) across the full specification range, demonstrate specificity (ability to detect out-of-spec material), and include ongoing verification that the model remains accurate. Any change to the process, equipment, or analytical method may require model revalidation.

The regulatory scrutiny of RTRT is intense because traditional quality oversight—catching failures through end-product testing—is eliminated. The MT model becomes a control replacing testing, and regulators expect validation rigor commensurate with that role. This is why I emphasize in discussions with manufacturing teams: RTRT is operationally attractive but validation-intensive. The MT model validation is your new rate-limiting step for continuous manufacturing implementation.

Regulatory Framework: Validating MT Models Per ICH Q13

The validation of MT models sits at the intersection of process validation, equipment qualification, and software validation. Understanding how these frameworks integrate is essential for designing a compliant validation strategy.

ICH Q13: Process Models in Continuous Manufacturing

ICH Q13 dedicates an entire section (3.1.7) to process models, reflecting their central role in continuous manufacturing control strategies. The guidance establishes several foundational principles:

Models must be validated for their intended use. The validation rigor should be commensurate with model impact (low/medium/high). A medium-impact MT model used for diversion decisions requires more extensive validation than a low-impact model used only for process understanding, but less than a high-impact model used as the sole basis for release decisions.

Model development requires understanding of underlying assumptions. For RT models, this means explicitly stating whether the model assumes plug flow, perfect mixing, tanks-in-series, or some hybrid. These assumptions must remain valid across the commercial operating range. If the model assumes plug flow but the blender operates in a transitional regime between plug and mixed flow at certain speeds, the validation must address this discrepancy or narrow the operating range.

Model performance depends on input quality. RT models require inputs like mass flow rates, equipment speeds, and material properties. If these inputs are noisy, drifting, or measured inaccurately, model predictions will be unreliable. The validation must characterize how input uncertainty propagates through the model and ensure that the measurement systems providing inputs are adequate for the model’s intended use.

Model validation assesses fitness for intended use based on predetermined acceptance criteria using statistically sound approaches. This is where many organizations stumble. “Validation” is not a single campaign of three runs demonstrating the model works. It’s a systematic assessment across the operating range, under both steady-state and dynamic conditions, with predefined statistical acceptance criteria that account for both model uncertainty and measurement uncertainty.

Model monitoring and maintenance must occur routinely and when process changes are implemented. Models are not static. They require ongoing verification that predictions remain accurate, periodic review of model performance data, and revalidation when changes occur that could affect model validity (e.g., equipment modifications, raw material changes, process parameter range extensions).

These principles establish that MT model validation is a lifecycle activity, not a one-time event. Organizations must plan for initial validation during Stage 2 (Process Qualification) and ongoing verification during Stage 3 (Continued Process Verification), with appropriate triggers for revalidation documented in change control procedures.

FDA Process Validation Lifecycle Applied to Models

The FDA’s 2011 Process Validation Guidance describes a three-stage lifecycle: Process Design (Stage 1), Process Qualification (Stage 2), and Continued Process Verification (Stage 3). MT models participate in all three stages, but their role evolves.

Stage 1: Process Design

During process design, MT models are developed based on laboratory or pilot-scale data. The RTD is characterized through tracer studies or in silico modeling. Model structure is selected (tanks-in-series, axial dispersion, etc.) and parameters are fit to experimental data. Sensitivity analysis identifies which inputs most influence predictions. The design space for model operation is defined—the range of equipment settings, flow rates, and material properties over which the model is expected to remain accurate.

This stage establishes the scientific foundation for the model but does not constitute validation. The data are generated on development-scale equipment, often under idealized conditions. The model’s behavior at commercial scale remains unproven. What Stage 1 provides is a validated approach—confidence that the RTD methodology is sound, the model structure is appropriate, and the development data support moving to qualification.

Stage 2: Process Qualification

Stage 2 is where MT model validation occurs in the traditional sense. The model is deployed on commercial-scale equipment, and experiments are conducted to demonstrate that predictions match actual system behavior. This requires:

Qualified equipment. The commercial or scale-representative equipment used to generate validation data must be qualified per FDA and EMA expectations (IQ/OQ/PQ). Using non-qualified equipment introduces uncontrolled variability that cannot be distinguished from model error, rendering the validation inconclusive.

Predefined validation protocol. The protocol specifies what will be tested (steady-state accuracy, dynamic response, worst-case disturbances), how success will be measured (acceptance criteria for prediction error, typically expressed as mean absolute error or confidence intervals), and how many runs are required to demonstrate reproducibility.

Challenge studies. Deliberate disturbances are introduced (feed composition changes, flow rate adjustments, equipment speed variations) and the model’s predictions are compared to measured outcomes. The model must correctly predict when downstream composition changes, by how much, and for how long.

Statistical evaluation. Validation data are analyzed using appropriate statistical methods—not just “the model was close enough,” but quantitative assessment of bias, precision, and prediction intervals. The acceptance criteria must account for both model uncertainty and measurement method uncertainty.

Documentation. Everything is documented: the validation protocol, raw data, statistical analysis, deviations from protocol, and final validation report. This documentation will be reviewed during regulatory inspections, and deficiencies will result in 483 observations.

Successful Stage 2 validation provides documented evidence that the MT model performs as intended under commercial conditions and can reliably support GxP decisions.

Stage 3: Continued Process Verification

Stage 3 extends model validation into routine manufacturing. The model doesn’t stop needing validation once commercial production begins—it requires ongoing verification that it remains accurate as the process operates over time, materials vary within specifications, and equipment ages.

For MT models, Stage 3 verification includes:

  • Periodic comparison of predictions vs. actual measurements. During routine production, predictions of downstream composition (based on upstream measurements and the MT model) are compared to measured values. Discrepancies beyond expected variation trigger investigation.
  • Trending of model performance. Statistical tools like control charts or capability indices track whether model accuracy is drifting over time. A model that was accurate during validation but becomes biased six months into commercial production indicates something has changed—equipment wear, material property shifts, or model degradation.
  • Review triggered by process changes. Any change that could affect the RTD—equipment modification, operating range extension, formulation change—requires evaluation of whether the model remains valid or needs revalidation.
  • Annual product quality review. Model performance data are reviewed as part of broader process performance assessment, ensuring that the model’s continued fitness for use is formally evaluated and documented.

This lifecycle approach aligns with how I describe CPV in previous posts: validation is not a gate you pass through once, it’s a state you maintain through ongoing verification. MT models are no exception.

Equipment Qualification: The Foundation for GxP Models

Here’s where organizations often stumble, and where the regulatory expectations are unambiguous: GxP models require GxP data, and GxP data require qualified equipment.

21 CFR 211.63 requires that equipment used in manufacturing be “of appropriate design, adequate size, and suitably located to facilitate operations for its intended use.” The FDA’s Process Validation Guidance makes clear that equipment qualification (IQ/OQ/PQ) is an integral part of process validation. ICH Q7 requires equipment qualification to support data validity. EMA Annex 15 requires qualification of critical systems before use.

The logic is straightforward: if the equipment used to generate MT model validation data is not qualified—meaning its installation, operation, and performance have not been documented to meet specifications—then you have not established that the equipment is suitable for its intended use. Any data generated on that equipment are of uncertain quality. The flow rates might be inaccurate. The mixing performance might differ from the qualified units. The control system might behave inconsistently.

This uncertainty is precisely what validation is meant to eliminate. When you validate an MT model using data from qualified equipment, you’re demonstrating: “This model, when applied to equipment operating within qualified parameters, produces reliable predictions.” When you validate using non-qualified equipment, you’re demonstrating: “This model, when applied to equipment of unknown state, produces predictions of unknown reliability.”

The Risk Assessment Fallacy

Some organizations propose using Risk Assessments to justify generating MT model validation data on non-qualified equipment. The argument goes: “The equipment is the same make and model as our qualified production units, we’ll operate it under the same conditions, and we’ll perform a Risk Assessment to identify any gaps.”

This approach conflates two different types of risk. A Risk Assessment can identify which equipment attributes are critical to the process and prioritize qualification activities. But it cannot retroactively establish that equipment meets its specifications. Qualification provides documented evidence that equipment performs as intended. A risk assessment without that evidence is speculative: “We believe the equipment is probably suitable, based on similarity arguments.”

Regulators do not accept speculative suitability for GxP activities. The whole point of qualification is to eliminate speculation through documented testing. For exploratory work—algorithm development, feasibility studies, preliminary model structure selection—using non-qualified equipment is acceptable because the data are not used for GxP decisions. But for MT model validation that will support accept/reject decisions in manufacturing, equipment qualification is not optional.

Data Requirements for GxP Models

ICH Q13 and regulatory guidance establish that data used to validate GxP models must be generated under controlled conditions. This means:

  • Calibrated instruments. Flow meters, scales, NIR probes, and other sensors must have current calibration records demonstrating traceability to standards.
  • Documented operating procedures. The experiments conducted to validate the model must follow written protocols, with deviations documented and justified.
  • Qualified analysts. Personnel conducting validation studies must be trained and qualified for the activities they perform.
  • Data integrity. Electronic records must comply with 21 CFR Part 11 or equivalent standards, ensuring that data are attributable, legible, contemporaneous, original, and accurate (ALCOA+).
  • GMP environment. While development activities can occur in non-GMP settings, validation data used to support commercial manufacturing typically must be generated under GMP or GMP-equivalent conditions.

These requirements are not bureaucratic obstacles. They ensure that the data underpinning GxP decisions are trustworthy. An MT model validated using uncalibrated flow meters, undocumented procedures, and un-audited data would not withstand regulatory scrutiny—and more importantly, would not provide the assurance that the model reliably supports product quality decisions.

Model Development: From Tracer Studies to Implementation

Developing a validated MT model is a structured process that moves from conceptual design through experimental characterization to software implementation. Each step requires both scientific rigor and regulatory foresight.

Characterizing RTD Through Experiments

The first step is characterizing the RTD for each unit operation in the continuous line. For a direct compression line, this means separately characterizing feeders, blender, material transfer systems, and tablet press. For integrated biologics processes, it might include perfusion bioreactor, chromatography columns, and hold tanks.

Tracer studies are the gold standard. A pulse of tracer is introduced at the unit inlet, and its concentration is measured at the outlet over time. The normalized concentration-time curve is the RTD. For solid oral dosage manufacturing, tracers might include:

  • Colored excipients (e.g., colored lactose) detected by visual inspection or optical sensors
  • UV-absorbing compounds detected by inline UV spectroscopy
  • NIR-active materials detected by NIR probes
  • The API itself, stepped up or down in concentration and detected by NIR or online HPLC

The tracer must satisfy two requirements: it must flow identically to the material it represents (matching particle size, density, flowability), and it must be detectable with adequate sensitivity and temporal resolution. A tracer that segregates from the bulk material will produce an unrepresentative RTD. A tracer with poor detectability will create noisy data that obscure the true distribution shape.

Step-change studies avoid external tracers by altering feed composition. For example, switching from API Lot A to API Lot B (with distinguishable NIR spectra) and tracking the transition at the outlet. This approach is more representative because it uses actual process materials, but it requires analytical methods capable of real-time discrimination and may consume significant API during validation.

In silico modeling uses computational simulations—Discrete Element Modeling (DEM) for particulate flow, Computational Fluid Dynamics (CFD) for liquid or gas flow—to predict RTD from first principles. These approaches are attractive because they avoid consuming material and can explore conditions difficult to test experimentally (e.g., very low flow rates, extreme compositions). However, they require extensive validation: the simulation parameters must be calibrated against experimental data, and the model’s predictive accuracy must be demonstrated across the operating range.

Tracer Studies in Biologics: Relevance and Unique Considerations

Tracer studies remain the gold standard experimental methodology for characterizing residence time distribution in biologics continuous manufacturing, but they require substantially different approaches than their small molecule counterparts. The fundamental challenge is straightforward: a therapeutic protein—typically 150 kDa for a monoclonal antibody, with specific charge characteristics, hydrophobicity, and binding affinity to chromatography resins—will not behave like sodium nitrate, methylene blue, or other simple chemical tracers. The tracer must represent the product, or the RTD you characterize will not represent the reality your MT model must predict.

ICH Q13 explicitly recognizes tracer studies as an appropriate methodology for RTD characterization but emphasizes that tracers “should not interfere with the process dynamics, and the characterization should be relevant to the commercial process.” This requirement is more stringent for biologics than for small molecules. A dye tracer moving through a tablet press powder bed provides reasonable RTD approximation because the API and excipients have similar particle flow properties. That same dye injected into a protein A chromatography column will not bind to the resin, will flow only through interstitial spaces, and will completely fail to represent how antibody molecules—which bind, elute, and experience complex partitioning between mobile and stationary phases—actually traverse the column. The tracer selection for biologics is not a convenience decision; it’s a scientific requirement that directly determines whether the characterized RTD has any validity.

For perfusion bioreactors, the tracer challenge is somewhat less severe. Inert tracers like sodium nitrate or acetone can adequately characterize bulk fluid mixing and holdup volume because these properties are primarily hydrodynamic—they depend on impeller design, agitation speed, and vessel geometry more than molecular properties. Research groups have used methylene blue, fluorescent dyes, and inert salts to characterize perfusion bioreactor RTD with reasonable success. However, even here, complications arise. The presence of cells—at densities of 50-100 million cells/mL in high-density perfusion—creates non-Newtonian rheology and potential dead zones that affect mixing. An inert tracer dissolved in the liquid phase may not accurately represent the RTD experienced by secreted antibody molecules, which must diffuse away from cells through the pericellular environment before entering bulk flow. For development purposes, inert tracers provide valuable process understanding, but validation-level confidence requires either using the therapeutic protein itself or validating that the tracer RTD matches product RTD under the conditions of interest.

Continuous chromatography presents the most significant tracer selection challenge. Fluorescently labeled antibodies have become the industry standard for characterizing protein A capture RTD, polishing chromatography dynamics, and integrated downstream process behavior. These tracers—typically monoclonal antibodies conjugated with Alexa Fluor dyes or similar fluorophores—provide real-time detection at nanogram concentrations, enabling high-resolution RTD measurement without consuming large quantities of expensive therapeutic protein. But fluorescent labeling is not benign. Research demonstrates that labeled antibodies can exhibit different binding affinities, altered elution profiles, and shifted retention times compared to unlabeled proteins, even when labeling ratios are kept low (1-2 fluorophores per antibody molecule). The hydrophobic fluorophore can increase non-specific binding, alter aggregation propensity, or change the protein’s effective charge, any of which affects chromatography behavior.

The validation requirement, therefore, is not just characterizing RTD with a fluorescently labeled tracer—it’s demonstrating that the tracer-derived RTD represents unlabeled therapeutic protein behavior within acceptable limits. This typically involves comparative studies: running both labeled tracer and unlabeled protein through the same chromatography system under identical conditions, comparing retention times, peak shapes, and recovery, and establishing that differences fall within predefined acceptance criteria. If the labeled tracer elutes 5% faster than unlabeled product, your MT model must account for this offset, or your predictions of when material will exit the column will be systematically wrong. For GxP validation, this tracer qualification becomes part of the overall model validation documentation.

An alternative approach—increasingly preferred for validation on qualified equipment—is step-change studies using the actual therapeutic protein. Rather than introducing an external tracer into the GMP system, you alter the concentration of the product itself (stepping from one concentration to another) or switch between distinguishable lots (if they can be differentiated by Process Analytical Technology). Online UV absorbance, NIR spectroscopy, or inline HPLC enables real-time tracking of the concentration change as it propagates through the system. This approach provides the most representative RTD possible because there is no tracer-product mismatch. The disadvantage is material consumption—step-changes require significant product quantities, particularly for large-volume systems—and the need for real-time analytical capability with sufficient sensitivity and temporal resolution.

During development, tracer studies provide immense value. You can explore operating ranges, test different process configurations, optimize cycle times, and characterize worst-case scenarios using inexpensive tracers on non-qualified pilot equipment. Green Fluorescent Protein, a recombinant protein expressed in E. coli and available at relatively low cost, serves as an excellent model protein for early development work. GFP’s molecular weight (~27 kDa) is smaller than antibodies but large enough to experience protein-like behavior in chromatography and filtration. For mixing studies, acetone, salts, or dyes suffice for characterizing hydrodynamics before transitioning to more expensive protein tracers. The key is recognizing the distinction: development-phase tracer studies build process understanding and inform model structure selection, but they do not constitute validation.

When transitioning to validation, the equipment qualification requirement intersects with tracer selection strategy. As discussed throughout this post, GxP validation data must come from qualified equipment. But now you face an additional decision: will you introduce tracers into qualified GMP equipment, or will you rely on step-changes with actual product? Both approaches have regulatory precedent, but the logistics differ substantially. Introducing fluorescently labeled antibodies into a qualified protein A column requires contamination control procedures—documented cleaning validation demonstrating tracer removal, potential hold-time studies if the tracer remains in the system between runs, and Quality oversight ensuring GMP materials are not cross-contaminated. Some organizations conclude this burden exceeds the value and opt for step-change validation studies exclusively, accepting the higher material cost.

For viral inactivation RTD characterization, inert tracers remain standard even during validation. Packed bed continuous viral inactivation reactors must demonstrate minimum residence time guarantees—every molecule experiencing at least 60 minutes of low pH exposure. Tracer studies with sodium nitrate or similar inert compounds characterize the leading edge of the RTD (the first material to exit, representing minimum residence time) across the validated flow rate range. Because viral inactivation occurs in a dedicated reactor with well-defined cleaning procedures, and because the inert tracer has no similarity to product that could create confusion, the contamination concerns are minimal. Validation protocols explicitly include tracer RTD characterization as part of demonstrating adequate viral clearance capability.

The integration of tracer studies into the MT model validation lifecycle follows the Stage 1/2/3 framework. During Stage 1 (Process Design), tracer studies on non-qualified development equipment characterize RTD for each unit operation, inform model structure selection, and establish preliminary parameter ranges. The data are exploratory, supporting scientific decisions about how to build the model but not yet constituting validation. During Stage 2 (Process Qualification), tracer studies—either with representative tracers on qualified equipment or step-changes with product—validate the MT model by demonstrating that predictions match experimental RTD within acceptance criteria. These are GxP studies, fully documented, conducted per approved protocols, and generating the evidence required to deploy the model for manufacturing decisions. During Stage 3 (Continued Process Verification), ongoing verification typically does not use tracers; instead, routine process data (predicted vs. measured compositions during normal manufacturing) provide continuous verification of model accuracy, with periodic tracer studies triggered only when revalidation is required after process changes.

For integrated continuous bioprocessing—where perfusion bioreactor connects to continuous protein A capture, viral inactivation, polishing, and formulation—the end-to-end MT model is the convolution of individual unit operation RTDs. Practically, this means you cannot run a single tracer study through the entire integrated line and expect to characterize each unit operation’s contribution. Instead, you characterize segments independently: perfusion RTD separately, protein A RTD separately, viral inactivation separately. The computational model integrates these characterized RTDs to predict integrated behavior. Validation then includes both segment-level verification (do individual RTDs match predictions?) and end-to-end verification (does the integrated model correctly predict when material introduced at the bioreactor appears at final formulation?). This hierarchical validation approach manages complexity and enables troubleshooting when predictions fail—you can determine whether the issue is in a specific unit operation’s RTD or in the integration logic.

A final consideration: documentation and regulatory scrutiny. Tracer studies conducted during development can be documented in laboratory notebooks, technical reports, or development summaries. Tracer studies conducted during validation require protocol-driven documentation: predefined acceptance criteria, approved procedures, qualified analysts, calibrated instrumentation, data integrity per 21 CFR Part 11, and formal validation reports. The tracer selection rationale must be documented and defensible: why was this tracer chosen, how does it represent the product, what validation was performed to establish representativeness, and what are the known limitations? During regulatory inspections, if your MT model relies on tracer-derived RTD, inspectors will review this documentation and assess whether the tracer studies support the conclusions drawn. The quality of this documentation—and the scientific rigor behind tracer selection and validation—determines whether your MT model validation survives scrutiny.

Tracer studies are not just relevant for biologics MT development—they are essential. But unlike small molecules where tracer selection is straightforward, biologics require careful consideration of molecular similarity, validation of tracer representativeness, integration with GMP contamination control, and clear documentation of rationale and limitations. Organizations that treat biologics tracers as simple analogs to small molecule dyes discover during validation that their RTD characterization is inadequate, their MT model predictions are inaccurate, and their validation documentation cannot withstand inspection. Tracer studies for biologics demand the same rigor as any other aspect of MT model validation: scientifically sound methodology, qualified equipment, documented procedures, and validated fitness for GxP use.

Model Selection and Parameterization

Once experimental RTD data are collected, a mathematical model is fit to the data. Common structures include:

Plug Flow with Delay. Material travels as a coherent plug with minimal mixing, exiting after a fixed delay time. Appropriate for short transfer lines or well-controlled conveyors.

Continuous Stirred Tank Reactor (CSTR). Material is perfectly mixed within the unit, with an exponential RTD. Appropriate for agitated vessels or blenders with high-intensity mixing.

Tanks-in-Series. A cascade of N idealized CSTRs approximates real equipment, with the number of tanks (N) tuning the distribution breadth. Higher N → narrower distribution, approaching plug flow. Lower N → broader distribution, more back-mixing. Blenders typically fall in the N = 3-10 range.

Axial Dispersion Model. Combines plug flow with diffusion-like spreading, characterized by a Peclet number. Used for tubular reactors or screw conveyors where both bulk flow and back-mixing occur.

Hybrid/Empirical Models. Combinations of the above, or fully empirical fits (e.g., gamma distributions) that match experimental data without mechanistic interpretation.

Model selection is both scientific and pragmatic. Scientifically, the model should reflect the equipment’s actual mixing behavior. Pragmatically, it should be simple enough for real-time computation and robust enough that parameter estimation from experimental data is stable.

Parameters are estimated by fitting the model to experimental RTD data—typically by minimizing the sum of squared errors between predicted and observed concentrations. The quality of fit is assessed statistically (R², residual analysis) and visually (overlay plots of predicted vs. actual). Importantly, the fitted parameters must be physically meaningful. If the model predicts a mean residence time of 30 seconds for a blender with 20 kg holdup and 10 kg/hr throughput (implying 7200 seconds), something is wrong with the model structure or the data.

Sensitivity Analysis

Sensitivity analysis identifies which model inputs most influence predictions. For MT models, key inputs include:

  • Mass flow rates (from loss-in-weight feeders)
  • Equipment speeds (blender RPM, press speed)
  • Material properties (bulk density, particle size, moisture content)
  • Fill levels (hopper mass, blender holdup)

Sensitivity analysis systematically varies each input (typically ±10% or across the specification range) and quantifies the change in model output. Inputs that cause large output changes are critical and require tight control and accurate measurement. Inputs with negligible effect can be treated as constants.

This analysis informs control strategy: which parameters need real-time monitoring, which require periodic verification, and which can be set at nominal values. It also informs validation strategy: validation studies must span the range of critical inputs to demonstrate model accuracy across the conditions that most influence predictions.

Model Performance Criteria

What does it mean for an MT model to be “accurate enough”? Acceptance criteria must balance two competing concerns: tight criteria provide high assurance of model reliability but may be difficult to meet, especially for complex systems with measurement uncertainty. Loose criteria are easy to meet but provide insufficient confidence in model predictions.

Typical acceptance criteria for MT models include:

  • Mean Absolute Error (MAE): The average absolute difference between predicted and measured composition.
  • Prediction Intervals: The model should correctly predict 95% of observations within a specified confidence interval (e.g., ±3% of predicted value).
  • Bias: Systematic over- or under-prediction across the operating range should be within defined limits (e.g., bias ≤ 1%).
  • Temporal Accuracy: For diversion applications, the model should predict disturbance arrival time within ±X seconds (where X depends on the residence time and diversion valve response).

These criteria are defined during Stage 1 (development) and formalized in the Stage 2 validation protocol. They must be achievable given the measurement method uncertainty and realistic given the model’s complexity. Setting acceptance criteria that are tighter than the analytical method’s reproducibility is nonsensical—you cannot validate a model more accurately than you can measure the truth.

Integration with PAT and Control Systems

The final step in model development is software implementation for real-time use. The MT model must be integrated with:

  • Process Analytical Technology (PAT). NIR probes, online HPLC, Raman spectroscopy, or other real-time sensors provide the inputs (e.g., upstream composition) that the model uses to predict downstream quality.
  • Control systems. The Distributed Control System (DCS) or Manufacturing Execution System (MES) executes the model calculations, triggers diversion decisions, and logs predictions alongside process data.
  • Data historians. All model inputs, predictions, and actual measurements are stored for trending, verification, and regulatory documentation.

This integration requires software validation per 21 CFR Part 11 and GAMP 5 principles. The model code must be version-controlled, tested to ensure calculations are implemented correctly, and validated to demonstrate that the integrated system (sensors + model + control actions) performs reliably. Change control must govern any modifications to model parameters, equations, or software implementation.

The integration also requires failure modes analysis: what happens if a sensor fails, the model encounters invalid inputs, or calculations time out? The control strategy must include contingencies—reverting to conservative diversion strategies, halting product collection until the issue is resolved, or triggering alarms for operator intervention.

Continuous Verification: Maintaining Model Performance Throughout Lifecycle

Validation doesn’t end when the model goes live. ICH Q13 explicitly requires ongoing monitoring of model performance, and the FDA’s Stage 3 CPV expectations apply equally to process models as to processes themselves. MT models require lifecycle management—a structured approach to verifying continued fitness for use and responding to changes.

Stage 3 CPV Applied to Models

Continued Process Verification for MT models involves several activities:

  • Routine Comparison of Predictions vs. Measurements. During commercial production, the model continuously generates predictions (e.g., “downstream API concentration will be 98.5% of target in 120 seconds”). These predictions are compared to actual measurements when the material reaches the measurement point. Discrepancies are trended.
  • Statistical Process Control (SPC). Control charts track model prediction error over time. If error begins trending (indicating model drift), action limits trigger investigation. Was there an undetected process change? Did equipment performance degrade? Did material properties shift within spec but beyond the model’s training range?
  • Periodic Validation Exercises. At defined intervals (e.g., annually, or after producing X batches), formal validation studies are repeated: deliberate feed changes are introduced and model accuracy is re-demonstrated. This provides documented evidence that the model remains in a validated state.
  • Integration with Annual Product Quality Review (APQR). Model performance data are reviewed as part of the APQR, alongside other process performance metrics. Trends, deviations, and any revalidation activities are documented and assessed for whether the model’s fitness for use remains acceptable.

These activities transform model validation from a one-time qualification into an ongoing state—a validation lifecycle paralleling the process validation lifecycle.

Model Monitoring Strategies

Effective model monitoring requires both prospective metrics (real-time indicators of model health) and retrospective metrics (post-hoc analysis of model performance).

Prospective metrics include:

  • Input validity checks: Are sensor readings within expected ranges? Are flow rates positive? Are material properties within specifications?
  • Prediction plausibility checks: Does the model predict physically possible outcomes? (e.g., concentration cannot exceed 100%)
  • Temporal consistency: Are predictions stable, or do they oscillate in ways inconsistent with process dynamics?

Retrospective metrics include:

  • Prediction accuracy: Mean error, bias, and variance between predicted and measured values
  • Coverage: What percentage of predictions fall within acceptance criteria?
  • Outlier frequency: How often do large errors occur, and can they be attributed to known disturbances?

The key to effective monitoring is distinguishing model error from process variability. If model predictions are consistently accurate during steady-state operation but inaccurate during disturbances, the model may not adequately capture transient behavior—indicating a need for revalidation or model refinement. If predictions are randomly scattered around measured values with no systematic bias, the issue may be measurement noise rather than model inadequacy.

Trigger Points for Model Maintenance

Not every process change requires model revalidation, but some changes clearly do. Defining triggers for model reassessment ensures that significant changes don’t silently invalidate the model.

Common triggers include:

  • Equipment changes. Replacement of a blender, modification of a feeder design, or reconfiguration of material transfer lines can alter RTD. The model’s parameters may no longer apply.
  • Operating range extensions. If the validated model covered flow rates of 10-30 kg/hr and production now requires 35 kg/hr, the model must be revalidated at the new condition.
  • Formulation changes. Altering API concentration, particle size, or excipient ratios can change material flow behavior and invalidate RTD assumptions.
  • Analytical method changes. If the NIR method used to measure composition is updated (new calibration model, different wavelengths), the relationship between model predictions and measurements may shift.
  • Performance drift. If SPC data show that model accuracy is degrading over time, even without identified changes, revalidation may be needed to recalibrate parameters or refine model structure.

Each trigger should be documented in a Model Lifecycle Management Plan—a living document that specifies when revalidation is required, what the revalidation scope should be, and who is responsible for evaluation and approval.

Change Control for Model Updates

When a trigger is identified, change control governs the response. The change control process for MT models mirrors that for processes:

  1. Change request: Describes the proposed change (e.g., “Update model parameters to reflect new blender impeller design”) and justifies the need.
  2. Impact assessment: Evaluates whether the change affects model validity, requires revalidation, or can be managed through verification.
  3. Risk assessment: Assess the risk of proceeding with or without revalidation. For a medium-impact MT model used in diversion decisions, the risk of invalidated predictions leading to product quality failures is typically high, justifying revalidation.
  4. Revalidation protocol: If revalidation is required, a protocol is developed, approved, and executed. The protocol scope should be commensurate with the change—a minor parameter adjustment might require focused verification, while a major equipment change might require full revalidation.
  5. Documentation and approval: All activities are documented (protocols, data, reports) and reviewed by Quality. The updated model is approved for use, and training is conducted for affected personnel.

This process ensures that model changes are managed with the same rigor as process changes—because from a GxP perspective, the model is part of the process.

Living Model Validation Approach

The concept of living validation—continuous, data-driven reassessment of validated status—applies powerfully to MT models. Rather than treating validation as a static state achieved once and maintained passively, living validation treats it as a dynamic state continuously verified through real-world performance data.

In this paradigm, every batch produces data that either confirms or challenges the model’s validity. SPC charts tracking prediction error function as ongoing validation, with control limits serving as acceptance criteria. Deviations from expected performance trigger investigation, potentially leading to model refinement or revalidation.

This approach aligns with modern quality paradigms—ICH Q10’s emphasis on continual improvement, PAT’s focus on real-time quality assurance, and the shift from retrospective testing to prospective control. For MT models, living validation means the model is only as valid as its most recent performance—not validated because it passed qualification three years ago, but validated because it continues to meet acceptance criteria today.

The Qualified Equipment Imperative

Throughout this discussion, one theme recurs: MT models used for GxP decisions must be validated on qualified equipment. This requirement deserves focused attention because it’s where well-intentioned shortcuts often create compliance risk.

Why Equipment Qualification Matters for MT Models

Equipment qualification establishes documented evidence that equipment is suitable for its intended use and performs reliably within specified parameters. For MT models, this matters in two ways:

First, equipment behavior determines the RTD. If the blender you use for validation is poorly mixed (due to worn impellers, imbalanced shaft, or improper installation), the RTD you characterize will reflect that poor performance—not the RTD of properly functioning equipment. When you deploy the model on qualified production equipment (which is properly mixed), predictions will be systematically wrong. You’ve validated a model of broken equipment, not functional equipment.

Second, equipment variability introduces uncertainty. Even if non-qualified development equipment happens to perform similarly to production equipment, you cannot demonstrate that similarity without qualification. The whole point of qualification is to document—through IQ verification of installation, OQ testing of functionality, and PQ demonstration of consistent performance—that equipment meets specifications. Without that documentation, claims of similarity are unverifiable speculation.

21 CFR 211.63 and Equipment Design Requirements

21 CFR 211.63 states that equipment used in manufacture “shall be of appropriate design, adequate size, and suitably located to facilitate operations for its intended use.” Generating validation data for a GxP model is part of manufacturing operations—it’s creating the documented evidence required to support accept/reject decisions. Equipment used for this purpose must be appropriate, adequate, and suitable—demonstrated through qualification.

The FDA has consistently reinforced this in warning letters. A 2023 Warning Letter to a continuous manufacturing facility cited lack of equipment qualification as part of process validation deficiencies, noting that “equipment qualification is an integral part of the process validation program.” The inspection findings emphasized that data from non-qualified equipment cannot support validation because equipment performance has not been established.

Data Integrity from Qualified Systems

Beyond performance verification, qualification ensures data integrity. Qualified equipment has documented calibration of sensors, validated control systems, and traceable data collection. When validation data are generated on qualified systems:

  • Flow meters are calibrated, so measured flow rates are accurate
  • Temperature and pressure sensors are verified, so operating conditions are documented correctly
  • NIR or other PAT tools are validated, so composition measurements are reliable
  • Data logging systems comply with 21 CFR Part 11, so records are attributable and tamper-proof

Non-qualified equipment may lack these controls. Uncalibrated sensors introduce measurement error that confounds model validation—you cannot distinguish model inaccuracy from sensor inaccuracy. Un-validated data systems raise data integrity concerns—can the validation data be trusted, or could they have been manipulated?

Distinction Between Exploratory and GxP Data

The qualification imperative applies to GxP data, not all data. Early model development—exploring different RTD structures, conducting initial tracer studies to understand mixing behavior, or testing modeling software—can occur on non-qualified equipment. These are exploratory activities generating data used to design the model, not validate it.

The distinction is purpose. Exploratory data inform scientific decisions: “Does a tanks-in-series model fit better than an axial dispersion model?” GxP data inform quality decisions: “Does this model reliably predict composition within acceptance criteria, thereby supporting accept/reject decisions in manufacturing?”

Once the model structure is selected and development is complete, GxP validation begins—and that requires qualified equipment. Organizations sometimes blur this boundary, using exploratory equipment for validation or claiming that “similarity” to qualified equipment makes validation data acceptable. Regulators reject this logic. The equipment must be qualified for the purpose of generating validation data, not merely qualified for some other purpose.

Risk Assessment Limitations for Retroactive Qualification

Some organizations propose performing validation on non-qualified equipment, then “closing gaps” through risk assessment or retroactive qualification. This approach is fundamentally flawed.

A risk assessment can identify what should be qualified and prioritize qualification efforts. It cannot substitute for qualification. Qualification provides documented evidence of equipment suitability. A risk assessment without that evidence is a documented guess—”We believe the equipment probably meets requirements, based on these assumptions.”

Retroactive qualification—attempting to qualify equipment after data have been generated—faces similar problems. Qualification is not just about testing equipment today; it’s about documenting that the equipment was suitable when the data were generated. If validation occurred six months ago on non-qualified equipment, you cannot retroactively prove the equipment met specifications at that time. You can test it now, but that doesn’t establish historical performance.

The regulatory expectation is unambiguous: qualify first, validate second. Equipment qualification precedes and enables process validation. Attempting the reverse creates documentation challenges, introduces uncertainty, and signals to inspectors that the organization did not understand or follow regulatory expectations.

Practical Implementation Considerations

Beyond regulatory requirements, successful MT model implementation requires attention to practical realities: software systems, organizational capabilities, and common failure modes.

Integration with MES/C-MES Systems

MT models must integrate with Manufacturing Execution Systems (MES) or Continuous MES (C-MES) to function in production. The MES provides inputs to the model (feed rates, equipment speeds, material properties from PAT) and receives outputs (predicted composition, diversion commands, lot assignments).

This integration requires:

  • Real-time data exchange. The model must execute frequently enough to support timely decisions—typically every few seconds for diversion decisions. Data latency (delays between measurement and model calculation) must be minimized to avoid diverting incorrect material.
  • Fault tolerance. If a sensor fails or the model encounters invalid inputs, the system must fail safely—typically by reverting to conservative diversion (divert everything until the issue is resolved) rather than allowing potentially non-conforming material to pass.
  • Audit trails. All model predictions, input data, and diversion decisions must be logged for regulatory traceability. The audit trail must be tamper-proof and retained per data retention policies.
  • User interface. Operators need displays showing model status, predicted composition, and diversion status. Quality personnel need tools for reviewing model performance data and investigating discrepancies.

This integration is a software validation effort in its own right, governed by GAMP 5 and 21 CFR Part 11 requirements. The validated model is only one component; the entire integrated system must be validated.

Software Validation Requirements

MT models implemented in software require validation addressing:

  • Requirements specification. What should the model do? (Predict composition, trigger diversion, assign lots)
  • Design specification. How will it be implemented? (Programming language, hardware platform, integration architecture)
  • Code verification. Does the software correctly implement the mathematical model? (Unit testing, regression testing, verification against hand calculations)
  • System validation. Does the integrated system (sensors + model + control + data logging) perform as intended? (Integration testing, performance testing, user acceptance testing)
  • Change control. How are software updates managed? (Version control, regression testing, approval workflows)

Organizations often underestimate the software validation burden for MT models, treating them as informal calculations rather than critical control systems. For a medium-impact model informing diversion decisions, software validation is non-negotiable.

Training and Competency

MT models introduce new responsibilities and require new competencies:

  • Operators must understand what the model does (even if they don’t understand the math), how to interpret model outputs, and what to do when model status indicates problems.
  • Process engineers must understand model assumptions, operating range, and when revalidation is needed. They are typically the SMEs evaluating change impacts on model validity.
  • Quality personnel must understand validation status, ongoing verification requirements, and how to review model performance data during deviations or inspections.
  • Data scientists or modeling specialists must understand the regulatory framework, validation requirements, and how model development decisions affect GxP compliance.

Training must address both technical content (how the model works) and regulatory context (why it must be validated, what triggers revalidation, how to maintain validated status). Competency assessment should include scenario-based evaluations: “If the model predicts high variability during a batch, what actions would you take?”

Common Pitfalls and How to Avoid Them

Several failure modes recur across MT model implementations:

Pitfall 1: Using non-qualified equipment for validation. Addressed throughout this post—the solution is straightforward: qualify first, validate second.

Pitfall 2: Under-specifying acceptance criteria. Vague criteria like “predictions should be reasonable” or “model should generally match data” are not scientifically or regulatorily acceptable. Define quantitative, testable acceptance criteria during protocol development.

Pitfall 3: Validating only steady state. MT models must work during disturbances—that’s when they’re most critical. Validation must include challenge studies creating deliberate upsets.

Pitfall 4: Neglecting ongoing verification. Validation is not one-and-done. Establish Stage 3 monitoring before going live, with defined metrics, frequencies, and escalation paths.

Pitfall 5: Inadequate change control. Process changes, equipment modifications, or material substitutions can silently invalidate models. Robust change control with clear triggers for reassessment is essential.

Pitfall 6: Poor documentation. Model development decisions, validation data, and ongoing performance records must be documented to withstand regulatory scrutiny. “We think the model works” is not sufficient—”Here is the documented evidence that the model meets predefined acceptance criteria” is what inspectors expect.

Avoiding these pitfalls requires integrating MT model validation into the broader validation lifecycle, treating models as critical control elements deserving the same rigor as equipment or processes.

Conclusion

Material Tracking models represent both an opportunity and an obligation for continuous manufacturing. The opportunity is operational: MT models enable material traceability, disturbance management, and advanced control strategies that batch manufacturing cannot match. They make continuous manufacturing practical by solving the “where is my material?” problem that would otherwise render continuous processes uncontrollable.

The obligation is regulatory: MT models used for GxP decisions—diversion, batch definition, lot assignment—require validation commensurate with their impact. This validation is not a bureaucratic formality but a scientific demonstration that the model reliably supports quality decisions. It requires qualified equipment, documented protocols, statistically sound acceptance criteria, and ongoing verification through the commercial lifecycle.

Organizations implementing continuous manufacturing often underestimate the validation burden for MT models, treating them as informal tools rather than critical control systems. This perspective creates risk. When a model makes accept/reject decisions, it is part of the control strategy, and regulators expect validation rigor appropriate to that role. Data generated on non-qualified equipment, models validated without adequate challenge studies, or systems deployed without ongoing verification will not survive regulatory inspection.

The path forward is integration: integrating MT model validation into the process validation lifecycle (Stages 1-3), integrating model development with equipment qualification, and integrating model performance monitoring with Continued Process Verification. Validation is not a separate workstream but an embedded discipline—models are validated because the process is validated, and the process depends on the models.

For quality professionals navigating continuous manufacturing implementation, the imperative is clear: treat MT models as the mission-critical systems they are. Validate them on qualified equipment. Define rigorous acceptance criteria. Monitor performance throughout the lifecycle. Manage changes through formal change control. Document everything.

And when colleagues propose shortcuts—using non-qualified equipment “just for development,” skipping challenge studies because “the model looks good in steady state,” or deferring verification plans because “we’ll figure it out later”—recognize these as the validation gaps they are. MT models are not optional enhancements or nice-to-have tools. They are regulatory requirements enabling continuous manufacturing, and they deserve validation practices that acknowledge their criticality.

The future of pharmaceutical manufacturing is continuous. The foundation of continuous manufacturing is material tracking. And the foundation of material tracking is validated models built on qualified equipment, maintained through lifecycle verification, and managed with the same rigor we apply to any system that stands between process variability and patient safety.

The Discretionary Deficit: Why Job Descriptions Fail to Capture the Real Work of Quality

Job descriptions are foundational documents in pharmaceutical quality systems. Regulations like 21 CFR 211.25 require that personnel have appropriate education, training, and experience to perform assigned functions. The job description serves as the starting point for determining training requirements, establishing accountability, and demonstrating regulatory compliance. Yet for all their regulatory necessity, most job descriptions fail to capture what actually makes someone effective in their role.​

The problem isn’t that job descriptions are poorly written or inadequately detailed. The problem is more fundamental: they describe static snapshots of isolated positions while ignoring the dynamic, interconnected, and discretionary nature of real organizational work.

The Static Job Description Trap

Traditional job descriptions treat roles as if they exist in isolation. A quality manager’s job description might list responsibilities like “lead inspection readiness activities,” “participate in vendor management,” or “write and review deviations and CAPAs”. These statements aren’t wrong, but they’re profoundly incomplete.​

Elliott Jacques, a late 20th century thinker on organizational theory, identified a critical distinction that most job descriptions ignore: the difference between prescribed elements and discretionary elements of work. Every role contains both, yet our documentation acknowledge only one.​

Prescribed elements are the boundaries, constraints, and requirements that eliminate choice. They specify what must be done, what cannot be done, and the regulations, policies, and methods to which the role holder must conform. In pharmaceutical quality, prescribed elements are abundant and well-documented: follow GMPs, complete training before performing tasks, document decisions according to procedure, escalate deviations within defined timeframes.

Discretionary elements are everything else—the choices, judgments, and decisions that cannot be fully specified in advance. They represent the exercise of professional judgment within the prescribed limits. Discretion is where competence actually lives.​

When we investigate a deviation, the prescribed elements are clear: follow the investigation procedure, document findings in the system, complete within regulatory timelines. But the discretionary elements determine whether the investigation succeeds: What questions should I ask? Which subject matter experts should I engage? How deeply should I probe this particular failure mode? What level of evidence is sufficient? When have I gathered enough data to draw conclusions?

As Jacques observed, “the core of industrial work is therefore not only to carry out the prescribed elements of the job, but also to exercise discretion in its execution”. Yet if job descriptions don’t recognize and define the limits of discretion, employees will either fail to exercise adequate discretion or wander beyond appropriate limits into territory that belongs to other roles.​

The Interconnectedness Problem

Job descriptions also fail because they treat positions as independent entities rather than as nodes in an organizational network. In reality, all jobs in pharmaceutical organizations are interconnected. A mistake in manufacturing manifests as a quality investigation. A poorly written procedure creates training challenges. An inadequate risk assessment during tech transfer generates compliance findings during inspection.​

This interconnectedness means that describing any role in isolation fundamentally misrepresents how work actually flows through the organization. When I write about process owners, I emphasize that they play a fundamental role in managing interfaces between key processes precisely to prevent horizontal silos. The process owner’s authority and accountability extend across functional boundaries because the work itself crosses those boundaries.​

Yet traditional job descriptions remain trapped in functional silos. They specify reporting relationships vertically—who you report to, who reports to you—but rarely acknowledge the lateral dependencies that define how work actually gets done. They describe individual accountability without addressing mutual obligations.​

The Missing Element: Mutual Role Expectations

Jacques argued that effective job descriptions must contain three elements:

  • The central purpose and rationale for the position
  • The prescribed and discretionary elements of the work
  • The mutual role expectations—what the focal role expects from other roles, and vice versa​

That third element is almost entirely absent from job descriptions, yet it’s arguably the most critical for organizational effectiveness.

Consider a deviation investigation. The person leading the investigation needs certain things from other roles: timely access to manufacturing records from operations, technical expertise from subject matter experts, root cause methodology support from quality systems specialists, regulatory context from regulatory affairs. Conversely, those other roles have legitimate expectations of the quality professional: clear articulation of information needs, respect for operational constraints, transparency about investigation progress, appropriate use of their expertise.

These mutual expectations form the actual working contract that determines whether the organization functions effectively. When they remain implicit and undocumented, we get the dysfunction I see constantly: investigations that stall because operations claims they’re too busy to provide information, subject matter experts who feel blindsided by last-minute requests, quality professionals frustrated that other functions don’t understand the urgency of compliance timelines.​

Decision-making frameworks like DACI and RAPID exist precisely to make these mutual expectations explicit. They clarify who drives decisions, who must be consulted, who has approval authority, and who needs to be informed. But these frameworks work at the decision level. We need the same clarity at the role level, embedded in how we define positions from the start.​

Discretion and Hierarchy

The amount of discretion in a role—what Jacques called the “time span of discretion”—is actually a better measure of organizational level than traditional hierarchical markers like job titles or reporting relationships. A front-line operator works within tightly prescribed limits with short time horizons: follow this batch record, use these materials, execute these steps, escalate these deviations immediately. A site quality director operates with much broader discretion over longer time horizons: establish quality strategy, allocate resources across competing priorities, determine which regulatory risks to accept or mitigate, shape organizational culture over years.​

This observation has profound implications for how we think about organizational design. As I’ve written before, the idea that “the higher the rank in the organization the more decision-making authority you have” is absurd. In every organization I’ve worked in, people hold positions of authority over areas where they lack the education, experience, and training to make competent decisions.​

The solution isn’t to eliminate hierarchy—organizations need stratification by complexity and time horizon. The solution is to separate positional authority from decision authority and to explicitly define the discretionary scope of each role.​

A manufacturing supervisor might have positional authority over operations staff but should not have decision authority over validation strategies—that’s outside their discretionary scope. A quality director might have positional authority over the quality function but should not unilaterally decide equipment qualification approaches that require deep engineering expertise. Clear boundaries around discretion prevent the territorial conflicts and competence gaps that plague organizations.

Implications for Training and Competency

The distinction between prescribed and discretionary elements has critical implications for how we develop competency. Most pharmaceutical training focuses almost exclusively on prescribed elements: here’s the procedure, here’s how to use the system, here’s what the regulation requires. We measure training effectiveness by knowledge checks that assess whether people remember the prescribed limits.​

But competence isn’t about following procedures—it’s about exercising appropriate judgment within procedural constraints. It’s about knowing what to do when things depart from expectations, recognizing which risk assessment methodology fits a particular decision context, sensing when additional expertise needs to be consulted.​

These discretionary capabilities develop differently than procedural knowledge. They require practice, feedback, coaching, and sustained engagement over time. A meta-analysis examining skill retention found that complex cognitive skills like risk assessment decay much faster than simple procedural skills. Without regular practice, the discretionary capabilities that define competence actively degrade.

This is why I emphasize frequency, duration, depth, and accuracy of practice as the real measures of competence. It’s why deep process ownership requires years of sustained engagement rather than weeks of onboarding. It’s why competency frameworks must integrate skills, knowledge, and behaviors in ways that acknowledge the discretionary nature of professional work.​

Job descriptions that specify only prescribed elements provide no foundation for developing the discretionary capabilities that actually determine whether someone can perform the role effectively. They lead to training plans focused on knowledge transfer rather than judgment development, performance evaluations that measure compliance rather than contribution, and hiring decisions based on credentials rather than capacity.

Designing Better Job Descriptions

Quality leaders—especially those of us responsible for organizational design—need to fundamentally rethink how we define and document roles. Effective job descriptions should:

  • Articulate the central purpose. Why does this role exist? What job is the organization hiring this position to do? A deviation investigator exists to transform quality failures into organizational learning while demonstrating control to regulators. A validation engineer exists to establish documented evidence that systems consistently produce quality outcomes. Purpose provides the context for exercising discretion appropriately.
  • Specify prescribed boundaries explicitly. What are the non-negotiable constraints? Which policies, regulations, and procedures must be followed without exception? What decisions require escalation or approval? Clear prescribed limits create safety—they tell people where they can’t exercise judgment and where they must seek guidance.
  • Define discretionary scope clearly. Within the prescribed limits, what decisions is this role expected to make independently? What level of evidence is this role qualified to evaluate? What types of problems should this role resolve without escalation? How much resource commitment can this role authorize? Making discretion explicit transforms vague “good judgment” expectations into concrete accountability.
  • Document mutual role expectations. What does this role need from other roles to be successful? What do other roles have the right to expect from this position? How do the prescribed and discretionary elements of this role interface with adjacent roles in the process? Mapping these interdependencies makes the organizational system visible and manageable.
  • Connect to process roles explicitly. Rather than generic statements like “participate in CAPAs,” job descriptions should specify process roles: “Author and project manage CAPAs for quality system improvements” or “Provide technical review of manufacturing-related CAPAs”. Process roles define the specific prescribed and discretionary elements relevant to each procedure. They provide the foundation for role-based training curricula that address both procedural compliance and judgment development.​

Beyond Job Descriptions: Organizational Design

The limitations of traditional job descriptions point to larger questions about organizational design. If we’re serious about building quality systems that work—that don’t just satisfy auditors but actually prevent failures and enable learning—we need to design organizations around how work flows rather than how authority is distributed.​

This means establishing empowered process owners who have clear authority over end-to-end processes regardless of functional boundaries. It means implementing decision-making frameworks that explicitly assign decision roles based on competence rather than hierarchy. It means creating conditions for deep process ownership through sustained engagement rather than rotational assignments.​

Most importantly, it means recognizing that competent performance requires both adherence to prescribed limits and skillful exercise of discretion. Training systems, performance management approaches, and career development pathways must address both dimensions. Job descriptions that acknowledge only one while ignoring the other set employees up for failure and organizations up for dysfunction.

The Path Forward

Jacques wrote that organizational structures should be “requisite”—required by the nature of work itself rather than imposed by arbitrary management preferences. There’s wisdom in that framing for pharmaceutical quality. Our organizational structures should emerge from the actual requirements of pharmaceutical work: the need for both compliance and innovation, the reality of interdependent processes, the requirement for expert judgment alongside procedural discipline.​

Job descriptions are foundational documents in quality systems. They link to hiring decisions, training requirements, performance expectations, and regulatory demonstration of competence. Getting them right matters not just for audit preparedness but for organizational effectiveness.​

The next time you review a job description, ask yourself: Does this document acknowledge both what must be done and what must be decided? Does it clarify where discretion is expected and where it’s prohibited? Does it make visible the interdependencies that determine whether this role can succeed? Does it provide a foundation for developing both procedural compliance and professional judgment?

If the answer is no, you’re not alone. Most job descriptions fail these tests. But recognizing the deficit is the first step toward designing organizational systems that actually match the complexity and interdependence of pharmaceutical work—systems where competence can develop, accountability is clear, and quality is built into how we organize rather than inspected into what we produce.

The work of pharmaceutical quality requires us to exercise discretion well within prescribed limits. Our organizational design documents should acknowledge that reality rather than pretend it away.

    Example Job Description

    Site Quality Risk Manager – Seattle and Redmond Sites

    Reports To: Sr. Manager, Quality
    Department: Qualty
    Location: Hybrid/Field-Based – Certain Sites

    Purpose of the Role

    The Site Quality Risk Manager ensures that quality and manufacturing operations at the sites maintain proactive, compliant, and science-based risk management practices. The role exists to translate uncertainty into structured understanding—identifying, prioritizing, and mitigating risks to product quality, patient safety, and business continuity. Through expert application of Quality Risk Management (QRM) principles, this role builds a culture of curiosity, professional judgment, and continuous improvement in decision-making.

    Prescribed Work Elements

    Boundaries and required activities defined by regulations, procedures, and PQS expectations.

    • Ensure full alignment of the site Risk Program with the Corporate Pharmaceutical Quality System (PQS), ICH Q9(R1) principles, and applicable GMP regulations.
    • Facilitate and document formal quality risk assessments for manufacturing, laboratory, and facility operations.
    • Manage and maintain the site Risk Registers for sitefacilities.
    • Communicate high-priority risks, mitigation actions, and risk acceptance decisions to site and functional senior management.
    • Support Health Authority inspections and audits as QRM Subject Matter Expert (SME).
    • Lead deployment and sustainment of QRM process tools, templates, and governance structures within the corporate risk management framework.
    • Maintain and periodically review site-level guidance documents and procedures on risk management.

    Discretionary Work Elements

    Judgment and decision-making required within professional and policy boundaries.

    • Determine the appropriate depth and scope of risk assessments based on formality and system impact.
    • Evaluate the adequacy and proportionality of mitigations, balancing regulatory conservatism with operational feasibility.
    • Prioritize site risk topics requiring cross-functional escalation or systemic remediation.
    • Shape site-specific applications of global QRM tools (e.g., HACCP, FMEA, HAZOP, RRF) to reflect manufacturing complexity and lifecycle phase—from Phase 1 through PPQ and commercial readiness.
    • Determine which emerging risks require systemic visibility in the Corporate Risk Register and document rationale for inclusion or deferral.
    • Facilitate reflection-based learning after deviations, applying risk communication as a learning mechanism across functions.
    • Offer informed judgment in gray areas where quality principles must guide rather than prescribe decisions.

    Mutual Role Expectations

    From the Site Quality Risk Manager:

    • Partner transparently with Process Owners and Functional SMEs to identify, evaluate, and mitigate risks.
    • Translate technical findings into business-relevant risk statements for senior leadership.
    • Mentor and train site teams to develop risk literacy and discretionary competence—the ability to think, not just comply.
    • Maintain a systems perspective that integrates manufacturing, analytical, and quality operations within a unified risk framework.

    From Other Roles Toward the Site Quality Risk Manager:

    • Provide timely, complete data for risk assessments.
    • Engage in collaborative dialogue rather than escalation-only interactions.
    • Respect QRM governance boundaries while contributing specialized technical judgment.
    • Support implementation of sustainable mitigations beyond short-term containment.

    Qualifications and Experience

    • Bachelor’s degree in life sciences, engineering, or a related technical discipline. Equivalent experience accepted.
    • Minimum 4+ years relevant experience in Quality Risk Management within biopharmaceutical GMP manufacturing environments.
    • Demonstrated application of QRM methodologies (FMEA, HACCP, HAZOP, RRF) and facilitation of cross-functional risk assessments.
    • Strong understanding of ICH Q9(R1) and FDA/EMA risk management expectations.
    • Proven ability to make judgment-based decisions under regulatory and operational uncertainty.
    • Experience mentoring or building risk capabilities across technical teams.
    • Excellent communication, synthesis, and facilitation skills.

    Purpose in Organizational Design Context

    This role exemplifies a requisite position—where scope of discretion, not hierarchy, defines level of work. The Site Quality Risk Manager operates with a medium-span time horizon (6–18 months), balancing regulatory compliance with strategic foresight. Success is measured by the organization’s capacity to detect, understand, and manage risk at progressively earlier stages of product and process lifecycle—reducing reactivity and enabling resilience.

    Competency Development and Training Focus

    • Prescribed competence: Deep mastery of PQS procedures, regulatory standards, and risk methodologies.
    • Discretionary competence: Situational judgment, cross-functional influence, systems thinking, and adaptive decision-making.
      Training plans should integrate practice, feedback, and reflection mechanisms rather than static knowledge transfer, aligning with the competency framework principles.

    This enriched job description demonstrates how clarity of purpose, articulation of prescribed vs. discretionary elements, and defined mutual expectations transform a standard compliance document into a true instrument of organizational design and leadership alignment.

    Ten Films That Taught Me About Fear (and Quality)

    A Halloween confession from someone who spends their days investigating quality failures

    Halloween seems like the perfect time for a personal confession: I’m a horror film devotee. Not the kind who seeks out the latest gore-fest or jump-scare factory, but someone drawn to the films that understand fear as something more complex than shock value. These ten films have shaped not just my appreciation for cinema, but my understanding of how we process uncertainty, confront the unknown, and maintain psychological safety in the face of genuine threat.

    It strikes me that there’s something deeply familiar about the best horror films for someone who works in quality systems. Both domains are fundamentally about investigating what goes wrong, understanding the nature of threat, and building frameworks to manage the unmanageable. The films that have stayed with me longest are the ones that treat fear with the same seriousness I try to bring to quality investigations—as a signal worth understanding rather than a problem to be quickly resolved.

    The Foundation: Four Classics

    The Haunting (1963) remains the gold standard for atmospheric horror. Robert Wise’s adaptation of Shirley Jackson’s novel creates terror through suggestion, architecture, and Julie Harris’s powerhouse performance as Eleanor Lance. What makes this film essential is its understanding that the most effective horror comes from internal uncertainty rather than external threat. Eleanor’s breakdown mirrors the kind of systemic failure I see in quality investigations—a slow erosion of confidence until the very frameworks meant to provide safety become sources of fear.

    The Thing (1982) represents John Carpenter at his paranoid peak. This Antarctic nightmare about shape-shifting aliens attacking a research station operates as both visceral horror and meditation on trust, isolation, and the breakdown of social systems. The film’s exploration of how groups respond to existential threat—the descent into suspicion, the collapse of collaborative decision-making, the way fear transforms competent professionals into reactive survivors—feels remarkably relevant to anyone who’s witnessed organizational crisis.

    The Wicker Man (1973) stands as perhaps the greatest film about belief systems in collision. Edward Woodward’s devout Christian policeman investigating a missing child on a pagan Scottish island creates a masterclass in cultural investigation that ends in one of cinema’s most shocking conclusions. The film’s exploration of how our fundamental assumptions about right and wrong can become liabilities in unfamiliar contexts resonates with anyone who’s tried to implement quality systems across different organizational cultures.

    The Exorcist (1973) anchors supernatural horror in mundane medical and institutional reality. William Friedkin’s methodical approach treats possession as a quality problem—ruling out rational explanations, bringing in specialists, following established procedures until those procedures fail. The film’s power comes from its recognition that some problems exceed our frameworks for understanding them, but that professional competence and human connection remain our best tools for confronting the incomprehensible.

    The Art House Visionaries

    Possession (1981) might be Andrzej Żuławski’s masterpiece of marital breakdown as cosmic horror. Isabelle Adjani and Sam Neill deliver performances of such raw intensity that the film becomes genuinely disturbing on multiple levels—domestic, psychological, and existential. Like the best quality investigations, the film refuses simple explanations, building layers of interpretation that deepen rather than resolve the central mystery. Its exploration of how personal and professional relationships disintegrate under stress feels uncomfortably relevant to anyone who’s worked through organizational crisis.

    Don’t Look Now (1973) uses Nicolas Roeg’s innovative editing and Venice’s maze-like geography to create a ghost story that’s really about grief, memory, and the dangerous comfort of pattern recognition. Donald Sutherland and Julie Christie’s grieving couple chasing mysterious signs in the aftermath of their daughter’s drowning creates the same kind of interpretive challenge I encounter in complex quality investigations—when do meaningful patterns become dangerous obsessions? The film’s shocking ending suggests that our need to find meaning in tragedy can become its own form of blindness.

    The Psychological Deep Cuts

    Session 9 (2001) transforms an abandoned mental hospital into a meditation on workplace stress, environmental contamination, and the thin line between professional competence and psychological breakdown. Brad Anderson’s low-budget masterpiece follows asbestos removal workers slowly succumbing to the building’s malevolent influence, creating genuine atmospheric dread without relying on supernatural explanations. The film’s exploration of how work environments shape psychological states resonates with anyone who’s spent time investigating workplace safety and culture.

    Cure (1997) stands as Kiyoshi Kurosawa’s masterpiece of J-horror psychological investigation. Detective Takabe’s pursuit of a serial killer who somehow compels ordinary people to commit murders creates a procedural that becomes increasingly surreal and disturbing. The film’s exploration of social disconnection, memory, and the infectious nature of certain ideas operates as both police procedural and existential horror. Its methodical approach to inexplicable events mirrors the investigative mindset required for complex quality problems.

    Kill List (2011) begins as a gritty crime drama about two ex-military contractors taking a mysterious job, then transforms into something far more disturbing. Ben Wheatley’s exploration of violence, trauma, and masculine identity builds to one of the most shocking endings in recent horror. The film’s refusal to explain its supernatural elements creates the same interpretive challenge I encounter in quality investigations where the data suggests conclusions that exceed our frameworks for understanding.

    The Contemporary Master

    When Evil Lurks (2023) represents Demián Rugna’s breakthrough achievement in possession horror. This Argentinian film about two brothers trying to stop a demonic outbreak creates genuine dread through its systematic approach to supernatural contagion. The film’s exploration of how well-intentioned interventions can accelerate rather than resolve crisis resonates with anyone who’s witnessed quality initiatives that inadvertently destabilize the systems they’re meant to improve.

    Candyman (1992) transcends typical slasher conventions through Bernard Rose’s exploration of urban legends, racial commentary, and the power of belief itself. Virginia Madsen’s academic investigation into the Candyman legend in Chicago’s Cabrini-Green projects becomes a meditation on how stories shape reality, how research changes researchers, and how some truths carry dangerous consequences. Tony Todd’s iconic performance and Philip Glass’s haunting score elevate what could have been exploitation into genuine social horror.

    What Horror Teaches Quality

    Reflecting on these films, I’m struck by how many of their themes echo the work I do in quality. The best horror films understand that fear isn’t about shock value—it’s about the breakdown of systems we depend on for safety and meaning. They explore how competent professionals respond when their frameworks fail, how groups make decisions under extreme stress, and how the investigation process itself can become a source of contamination.

    Perhaps most importantly, these films understand that the most effective horror comes from taking time—building atmosphere, developing character, allowing dread to accumulate through patient observation rather than manufactured surprise. It’s the same patience required for effective quality work, the same recognition that sustainable solutions emerge from understanding systems rather than treating symptoms.

    This Halloween, as I revisit these films, I’m reminded that horror at its best is really about resilience—how we maintain professional competence and human connection when everything familiar becomes unreliable. That’s a lesson worth carrying beyond October, into every quality investigation, every organizational crisis, every moment when the frameworks we depend on prove insufficient to the challenges we face.

    The best horror films, like the best quality work, don’t provide easy answers. They create space for sitting with uncertainty, for maintaining curiosity in the face of fear, for remembering that our professional competence is most valuable precisely when our personal comfort is most threatened.

    Perhaps that’s what I love most about these films: they treat fear as information rather than obstacle, as signal rather than noise. In a world that increasingly demands quick fixes and simple explanations, they offer something more valuable—the discipline of patient observation, the courage of sustained inquiry, and the recognition that some mysteries are worth living with rather than solving away.

    What horror films have shaped your understanding of fear, uncertainty, or resilience? I’d love to hear about the films that have taught you something beyond scares, the ones that have changed how you think, as I am always looking for horror movie recommendations.