Retrospective Validation Doesn’t Really Exist

A recent FDA Warning Letter really drove home a good point about the perils of ‘retrospective validation’ and how that normally doesn’t mean what folks want it to mean.

“In lieu of process validation studies, you attempted to retrospectively review past batches without scientifically establishing blend uniformity and other critical process performance indicators. You do not commit to conduct further process performance qualification studies that scientifically establish the ability of your manufacturing process to consistently yield finished products that meet their quality attributes.”

The FDA’s response here is important for three truths:

  1. Validation needs to be done against critical quality attributes and critical process parameters to scientifically establish that the manufacturing process is consistent.
  2. Batch data on its own is rather useless.
  3. Validation is a continuous exercise, it is not once-and-done (or rather in most people’s view thrice-and-done).

I don’t think the current GMPs really allow the concept of retrospective validation as most people want it to mean (including the recipient of that warning letter). It’s probably a term we should go into the big box of Nope.

AI generated art

Retrospective validation as most people mean it is a type of process validation that involves evaluating historical data and records to demonstrate that an existing process consistently produces products meeting predetermined specifications. As an approach retrospective validation involves evaluating historical data and records to demonstrate that an existing process consistently produces products meeting predetermined specifications. 

The problem here is that this really just tells you what you were already hoping was true.

Retrospective validation has some major flaws:

  1. Limited control over data quality and completeness: Since retrospective validation relies on historical data, there may be gaps or inconsistencies in the available information. The data may not have been collected with validation in mind, leading to missing critical parameters or measurements. It rather throws out most of the principles of science.
  2. Potential bias in existing data: Historical data may be biased or incomplete, as it was not collected specifically for validation purposes. This can make it difficult to draw reliable conclusions about process performance and consistency.
  3. Difficulty in identifying and addressing hidden flaws: Since the process has been in use for some time, there may be hidden flaws or issues that have not been identified or challenged. These could potentially lead to non-conforming products or hazardous operating conditions.
  4. Difficulty in recreating original process conditions: It may be challenging to accurately recreate or understand the original process conditions under which the historical data was generated, potentially limiting the validity of conclusions drawn from the data.

What is truly called for is to perform concurrent validation.

Navigating the Evolving Landscape of Validation in Biotech: Challenges and Opportunities

The biotech industry is experiencing a significant transformation in validation processes, driven by rapid technological advancements, evolving regulatory standards, and the development of novel therapies.

The 2024 State of Validation report, authored by Jonathan Kay and funded by Kneat, provides a overview of trends and challenges in the validation industry. Here are some of the key findings:

  1. Compliance and efficiency are top priorities: Creating process efficiencies and ensuring audit readiness have become the primary goals for validation programs.
    • Compliance burden emerged as the top validation challenge in 2024, replacing shortage of human resources which was the top concern in 2022-2023
  2. Digital transformation is accelerating: 83% of respondents are either using or planning to adopt digital validation systems. The top benefits include improved data integrity, continuous audit readiness, and global standardization.
    • 79% of those using digital validation rely on third-party software providers
      • Does this mean that 21% of respondents are in companies that have created their own bespoke systems? Or is something else going on there
    • 63% reported that ROI from digital validation systems met or exceeded expectations
  3. Artificial intelligence and machine learning are on the rise: 70% of respondents believe AI and ML will play a pivotal role in the future of validation.
  4. Remote audits are becoming more common: 75% of organizations conducted at least some remote regulatory audits in the past year.
  5. Challenges persist: The industry faces ongoing challenges in balancing costs, attracting talent, and keeping pace with technological advancements.
    • 61% reported an increase in validation workload over the past 12 months
  6. Industry 4.0 adoption is growing: 60% of organizations are in the early stages or actively implementing Industry/Pharma 4.0 technologies.
  7. Digital Transformation:

As highlighted in the 2024 State of Validation report and my previous blog post on “Challenges in Validation,” several key trends and challenges are shaping the future of validation in biotech:

  1. Technological Integration: The integration of AI, machine learning, and automation into validation processes presents both opportunities and challenges. While these technologies offer the potential for increased efficiency and accuracy, they also require new validation frameworks and methodologies.
  2. Regulatory Compliance: Keeping pace with evolving regulatory standards remains a significant challenge. Regulatory bodies are continuously updating guidelines to address technological advancements, requiring companies to stay vigilant and adaptable.
  3. Data Management and Integration: With the increasing use of digital tools and platforms, managing and integrating vast amounts of data has become a critical challenge. The industry is moving towards more robust data analytics and machine learning tools to handle this data efficiently.
  4. Resource Constraints: Particularly for smaller biotech companies, resource limitations in funding, personnel, and expertise can hinder the implementation of advanced validation techniques.
  5. Risk Management: Adopting a risk-based approach to validation is essential but challenging. Companies must develop effective strategies to identify and mitigate risks throughout the product lifecycle.
  6. Collaboration and Knowledge Sharing: Ensuring effective communication and data sharing among various stakeholders is crucial for streamlining validation efforts and aligning goals.
  7. Digital Transformation: The industry is witnessing a shift from traditional, paper-heavy validation methods to more dynamic, data-driven, and digitalized processes. This transformation promises enhanced efficiency, compliance, and collaboration.
  8. Workforce Development: We are a heavily experience driven field. With 38% of validation professionals having 16 or more years of experience, there’s a critical need for knowledge transfer and training to equip newer entrants with necessary skills.
  9. Adoption of Computer Software Assurance (CSA): The industry is gradually embracing CSA processes, driven by recent FDA guidance, though there’s still considerable room for further adoption. I always find this showing up in surveys to be disappointing, as CSA is a racket, as it basically is already existing validation principles. But consultants got to consult.
  10. Focus on Efficiency and Audit Readiness: Creating process efficiencies and ensuring audit readiness have emerged as top priorities for validation programs.

As the validation landscape continues to evolve, it’s crucial for biotech companies to embrace these changes proactively. By leveraging new technologies, fostering collaboration, and focusing on continuous improvement, the industry can overcome these challenges and drive innovation in validation processes.

The future of validation in biotech lies in striking a balance between technological advancement and regulatory compliance, all while maintaining a focus on product quality and patient safety. As we move forward, it’s clear that the validation field will continue to be dynamic and exciting, offering numerous opportunities for innovation and growth.

Water, Water, Everywhere

XKCD, https://xkcd.com/2982/

Everyone probably feels like the above illustration sooner or later about their water system.

The Critical Role of Water in Pharmaceutical Manufacturing

In the pharmaceutical industry, we often joke that we’re primarily water companies that happen to make drugs on the side. This quip underscores a fundamental truth: water is a crucial component in drug manufacturing processes. Its purity and quality are paramount to ensuring the safety and efficacy of pharmaceutical products.

Why Water Quality Matters

Water is ubiquitous in pharmaceutical manufacturing, used in everything from cleaning equipment to serving as a key ingredient in many formulations. Given its importance, regulatory bodies like the FDA and EMA have established stringent Good Manufacturing Practice (GMP) guidelines for water systems in pharmaceutical facilities.

GMP Requirements for Water Systems

The GMPs mandate that water systems be meticulously designed, constructed, installed, commissioned, qualified, monitored, and maintained. The primary goal? Preventing microbiological contamination. This comprehensive approach encompasses several key areas:

  1. System Design: Water systems must be engineered to minimize the risk of contamination.
  2. Construction and Installation: Materials and methods used must meet high standards to ensure system integrity.
  3. Commissioning and Qualification: Rigorous testing is required to verify that the system performs as intended.
  4. Monitoring: Ongoing surveillance is necessary to detect any deviations from established parameters.
  5. Maintenance: Regular upkeep is crucial to maintain system performance and prevent degradation.

Key Regulatory Requirements

AgencyTitleYearURL
EMAGuideline on the quality of water for pharmaceutical use2020https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-water-pharmaceutical-use_en.pdf
WHOGood manufacturing practices: water for pharmaceutical use2012https://www.who.int/docs/default-source/medicines/norms-and-standards/guidelines/production/trs970-annex2-gmp-wate-pharmaceutical-use.pdf
US FDAGuide to inspections of high purity water systems2016https://www.fda.gov/media/75927/download
PIC/SInspection of utilities2014https://picscheme.org/docview/1941
US FDAWater for pharmaceutical use2014https://www.fda.gov/media/88905/download
USP<1231> Water for pharmaceutical purposes2020Not publicly available
USP<543> Water Conductivity2020Not publicly available
USP<85> Bacterial Endotoxins Test2020Not publicly available
USP<643> Total Organic Carbon2020Not publicly available
Ph. Eur.Monograph 0168 (Water for injections)2020Not publicly available
Ph. Eur.Monograph 0008 (Purified water)2020Not publicly available

Specific Measures for Contamination Prevention

To meet these GMP requirements, pharmaceutical manufacturers must implement several specific measures:

Minimizing Particulates

Particulate matter in water can compromise product quality and potentially harm patients. Filtration systems and regular cleaning protocols are essential to keep particulate levels in check.

Controlling Microbial Contamination

Microorganisms can proliferate rapidly in water systems if left unchecked. Strategies to prevent this include:

  • Regular sanitization procedures
  • Maintaining appropriate water temperatures
  • Implementing effective water treatment technologies (e.g., UV light, ozonation)

Preventing Endotoxin Formation

Endotoxins, produced by certain bacteria, can be particularly problematic in pharmaceutical water systems. Measures to prevent endotoxin formation include:

  • Minimizing areas where water can stagnate
  • Ensuring complete drainage of pipes
  • Regular system flushing

The Ongoing Challenge

Maintaining water quality in pharmaceutical manufacturing is not a one-time effort but an ongoing process. It requires constant vigilance, regular testing, and a commitment to continuous improvement. As regulations evolve and our understanding of potential contaminants grows, so too must our approaches to water system management.

Types of Water

These water types are defined and regulated by pharmacopeias such as the United States Pharmacopeia (USP), European Pharmacopoeia (Ph. Eur.), and other regional standards. Pharmaceutical manufacturers must adhere to the specific requirements outlined in these references to ensure water quality and safety in drug production.

Potable Water

Potable water, also known as drinking water, may be used for some pharmaceuticals bt is more commonly used in cosmetics. It can also be used for cleanings walls and floors in non-asceptic areas.

Key points:

  • Must comply with EPA standards or comparable regulations in the EU/Japan
  • Can be used to manufacture drug substances (bulk drugs)
  • Not suitable for preparing USP dosage forms or laboratory reagents

Purified Water (PW)

Purified water is widely used in pharmaceutical manufacturing for non-sterile preparations.

Specifications (USP <1231>):

  • Conductivity: ≤1.3 μS/cm at 25°C
  • Total organic carbon (TOC): ≤500 ppb
  • Microbial limits: ≤100 CFU/mL

Applications:

  • Non-parenteral preparations
  • Cleaning equipment for non-parenteral products
  • Preparation of some bulk chemicals

Water for Injection (WFI)

Water for Injection is used for parenteral drug products and has stricter quality standards.

Specifications (USP <1231>):

  • Conductivity: ≤1.3 μS/cm at 25°C
  • TOC: ≤500 ppb
  • Bacterial endotoxins: <0.25 EU/mL
  • Microbial limits: ≤10 CFU/100 mL

Production methods:

  • Distillation
  • Reverse osmosis (allowed by Ph. Eur. since 2017)

Sterile Water for Injection (SWFI)

SWFI is WFI that has been sterilized for direct administration.

Characteristics:

  • Sterile
  • Non-pyrogenic
  • Packaged in single-dose containers

Highly Purified Water (HPW)

Previously included in the European Pharmacopoeia, but now discontinued.

Type of WaterDescriptionUSP ReferenceEP Reference
Potable WaterMeets drinking water standards, used for early stages of manufacturingNot applicableNot applicable
Purified Water (PW)Used for non-sterile preparations, cleaning equipmentUSP <1231>Ph. Eur. 0008
Water for Injection (WFI)Used for parenteral products, higher purity than PWUSP <1231>Ph. Eur. 0169
Sterile Water for Injection (SWFI)WFI that has been sterilized for direct administrationUSP <1231>Ph. Eur. 0169
Bacteriostatic Water for InjectionContains bacteriostatic agents, for multiple-dose useUSP <1231>Ph. Eur. 0169
Sterile Water for IrrigationPackaged in single-dose containers larger than 1LUSP <1231>Ph. Eur. 1116
Sterile Water for InhalationFor use in inhalators, less stringent endotoxin levelsUSP <1231>Ph. Eur. 1116
Water for HemodialysisSpecially treated for use in hemodialysis, produced on-siteUSP <1231>Not specified

Additional relevant USP chapters:

  • USP <645>: Water for Pharmaceutical Purposes – Microbial Attributes
  • USP <85>: Bacterial Endotoxins Test

Always refer to the most current versions of the pharmacopoeial monographs and regulatory guidelines for detailed information.

Good Water System Design

Hygienic and Sanitary Design

The cornerstone of any good water system is its hygienic and sanitary design. This principle encompasses several aspects:

  • Smooth, cleanable surfaces: All surfaces in contact with water should be smooth, non-porous, and easily cleanable to prevent biofilm formation.
  • Self-draining components: Pipes and tanks should be designed to drain completely, eliminating standing water that could harbor microorganisms.
  • Accessibility: All parts of the system should be easily accessible for inspection, cleaning, and maintenance.

Material Selection

Choosing the right materials is crucial for maintaining water quality and system integrity:

  • Corrosion resistance: Use materials that resist corrosion, such as stainless steel (316L grade for high-purity applications) or appropriate food-grade plastics.
  • Smooth internal finish: Crevices are places where corrosion happens, electropolishing improves the resistance of stainless steel to corrosion.
  • Leachate prevention: Select materials that do not leach harmful substances into the water, even under prolonged contact or elevated temperatures.
  • Non-adsorptive surfaces: Avoid materials that may adsorb contaminants, which could later be released back into the water.

Microbial Control

Preventing microbial growth is essential for water system safety:

  • Elimination of dead legs: Design piping to avoid areas where water can stagnate and microorganisms can proliferate.
  • Temperature control: Maintain temperatures outside the optimal range for microbial growth (typically below 20°C or above 50°C).
  • Regular sanitization: Incorporate features that allow for effective and frequent sanitization of the entire system.

System Integrity

Ensuring the system remains sealed and leak-free is critical:

  • Proper sealing: Use appropriate gaskets and seals compatible with the system’s operating conditions.
  • Pressure testing: Implement regular pressure tests to identify and address potential leaks promptly.
  • Quality connections: Utilize sanitary fittings and connections designed for hygienic applications.

Cleaning and Sanitization Compatibility

The system must withstand regular cleaning and sanitization:

  • Chemical resistance: Choose materials and components that can tolerate cleaning and sanitizing agents without degradation.
  • Thermal stability: Ensure all parts can withstand thermal sanitization processes if applicable.
  • CIP/SIP design: Incorporate Clean-in-Place (CIP) or Steam-in-Place (SIP) features for efficient and thorough cleaning.

Capacity and Performance

Meeting output requirements while maintaining quality is crucial:

  • Proper sizing: Design the system to meet peak demand without compromising water quality or flow rates.
  • Redundancy: Consider incorporating redundant components for critical parts to ensure continuous operation.
  • Efficiency: Optimize the system layout to minimize pressure drops and energy consumption.

Monitoring and Control

Implement robust monitoring systems to ensure water quality:

  • Sampling points: Strategically place sampling ports throughout the system for regular quality checks.
  • Instrumentation: Install appropriate instruments to monitor critical parameters such as flow rate, pressure, temperature, and conductivity.
  • Control systems: Implement automated control systems to maintain consistent water quality and system performance.

Regulatory Compliance

Ensure the system design meets all relevant regulatory requirements:

  • Material compliance: Use only materials approved for contact with water in your specific application.
  • Documentation: Maintain detailed documentation of system design, materials, and operating procedures.
  • Validation: Conduct thorough system qualification to demonstrate consistent performance and quality.

By adhering to these principles, you can design a water system that not only meets your capacity requirements but also ensures the highest standards of safety and quality. Remember, good water system design is an ongoing process that requires regular review and updates to maintain its effectiveness over time.

The Challenge of Cleanroom Classification Harmonization

In the world of pharmaceutical manufacturing, cleanroom classifications play a crucial role in ensuring product quality and patient safety. However, a significant hurdle in the global harmonization of regulations has been a pain in our sides for a long time, that highlights the persistent differences between major regulatory bodies, including the FDA, EMA, and others, despite efforts to align through organizations like the World Health Organization (WHO) and the Pharmaceutical Inspection Co-operation Scheme (PIC/S).

The Current Landscape

United States Approach

In the United States, cleanroom classifications are primarily governed by two key documents:

  1. The FDA’s “Sterile Drug Products Produced by Aseptic Processing” guidance
  2. ISO 14644-1 standard for cleanroom classifications

The ISO 14644-1 standard is particularly noteworthy as it’s a general standard applicable across various industries utilizing cleanrooms, not just pharmaceuticals.

European Union Approach

The European Union takes a different stance, employing a grading system outlined in the EU GMP guide:

  • Grades A through D are used for normal cleanroom operation
  • ISO 14644 is still utilized, but primarily for validation purposes

World Health Organization Alignment

The World Health Organization (WHO) aligns with the European approach, adopting the same A to D grading system in its GMP guidelines.

The Implications of Disharmony

This lack of harmonization in cleanroom classifications presents several challenges:

  1. Regulatory Complexity: Companies operating globally must navigate different classification systems, potentially leading to confusion and increased compliance costs.
  2. Technology Transfer Issues: Transferring manufacturing processes between regions becomes more complicated when cleanroom requirements differ.
  3. Inspection Inconsistencies: Differences in classification systems can lead to varying interpretations during inspections by different regulatory bodies.

The Missed Opportunity in Annex 1

The recent update to Annex 1, a key document in GMP regulations, could have been a prime opportunity to address this disharmony. However, despite involvement from WHO and PIC/S (and through them the FDA), the update failed to bring about the hoped-for alignment in cleanroom classifications.

Moving Forward

As the pharmaceutical industry continues to globalize, the need for harmonized regulations continues to be central. I would love to see future efforts towards harmonization here that would:

  1. Prioritize alignment on fundamental technical specifications like cleanroom classifications
  2. Consider the practical implications for manufacturers operating across multiple jurisdictions

While the journey towards full regulatory harmonization may be long and challenging, addressing key discrepancies like cleanroom classifications would represent a significant step forward for the global pharmaceutical industry.

Practicing Humility as Part of a Quality Culture

Cultural humility is an important part of Quality Culture. Cultural humility is often seen as approaching interactions with an attitude of openness, asking questions to learn rather than making assumptions, being willing to admit what you don’t know, and constantly examining your own lens and biases. It’s about creating an environment where all perspectives are valued and people feel respected.

Cultural humility involves several key characteristics and behaviors:

  1. Self-reflection and self-critique: The entire organization, from individual to team to the whole engage in ongoing self-examination of their actions and behaviors.
  2. Openness and curiosity: Those with cultural humility approach problems and interactions with people with genuine interest and a desire to learn, rather than making assumptions.
  3. Lifelong learning: Cultural humility is viewed as a lifelong process of learning about other cultures, not a destination to be reached.
  4. Acknowledging power imbalances: It involves recognizing and working to address power differentials that exist within the organization (hierarchical and otherwise).
  5. Respecting other perspectives: Quality decision making involves intentionally gathering input from people with different backgrounds, experiences, and areas of expertise. This helps broaden the range of ideas and considerations
  6. Avoiding biases: Implicit biases are unconscious attitudes or stereotypes that can affect our understanding, actions, and decisions. By working to understand and address these we strive towards realizing humility in our actions and behaviors.
  7. Active listening: Truly hearing and trying to understand.
  8. Partnership-building: It involves developing mutually beneficial and non-paternalistic partnerships with people from different teams, experience and backgrounds.
  9. Institutional accountability: On an organizational level, humility includes holding oneself accountable to the practice.
  10. Advocacy: Those practicing cultural humility often work to address systemic inequalities and advocate for others.

Leadership Behaviors

Humble leaders exhibit the following behaviors:

  1. Admitting limitations and mistakes
  2. Appreciating others’ strengths and contributions
  3. Being open to new ideas and feedback
  4. Listening before speaking
  5. Encouraging employees to keep trying and viewing mistakes as learning opportunities
  6. Taking responsibility for employees’ mistakes
  7. Modeling openness and fallibility
  8. Maintaining a collective focus

Cultural Attributes

A work culture with humble leadership is characterized by:

  1. Openness to new ideas and continuous learning
  2. Appreciation for diverse perspectives and contributions
  3. Reduced fear of taking interpersonal risks
  4. High-quality interpersonal relationships
  5. Collective humility within teams
  6. Trust between leaders and team members
  7. Inclusivity and reduced power differentials
  8. Emphasis on growth and development rather than blame

Employee Perceptions and Behaviors

In a humble environment, employees are more likely to:

  1. Feel safe expressing themselves and taking risks
  2. Believe in their ability to contribute constructively
  3. Engage in voice behaviors and share ideas
  4. Show themselves freely without fear of adverse consequences
  5. Imitate leaders in showing their own shortcomings and appreciating others
  6. Perceive making mistakes as acceptable
  7. Experience increased job satisfaction and reduced turnover intentions

Organizational Practices

To cultivate humility and psychological safety, organizations can:

  1. Develop policies and practices that promote diversity, equity, and inclusion
  2. Create an inclusive climate for errors and mutual assistance
  3. Implement leadership development programs focused on humble behaviors
  4. Encourage open dialogue and social relationships in teams
  5. Foster an error management climate that doesn’t punish mistakes but learns from them