The Golden Start to a Deviation Investigation

How you respond in the first 24 hours after discovering a deviation can make the difference between a minor quality issue and a major compliance problem. This critical window-what I call “The Golden Day”-represents your best opportunity to capture accurate information, contain potential risks, and set the stage for a successful investigation. When managed effectively, this initial day creates the foundation for identifying true root causes and implementing effective corrective actions that protect product quality and patient safety.

Why the First 24 Hours Matter: The Evidence

The initial response to a deviation is crucial for both regulatory compliance and effective problem-solving. Industry practice and regulatory expectations align on the importance of quick, systematic responses to deviations.

  • Regulatory expectations explicitly state that deviation investigation and root cause determination should be completed in a timely manner, and industry expectations usually align on deviations being completed within 30 days of discovery.
  • In the landmark U.S. v. Barr Laboratories case, “the Court declared that all failure investigations must be performed promptly, within thirty business days of the problem’s occurrence”
  • Best practices recommend assembling a cross-functional team immediately after deviation discovery and conduct initial risk assessment within 24 hours”
  • Initial actions taken in the first day directly impact the quality and effectiveness of the entire investigation process

When you capitalize on this golden window, you’re working with fresh memories, intact evidence, and the highest chance of observing actual conditions that contributed to the deviation.

Identifying the Problem: Clarity from the Start

Clear, precise problem definition forms the foundation of any effective investigation. Vague or incomplete problem statements lead to misdirected investigations and ultimately, inadequate corrective actions.

  • Document using specific, factual language that describes what occurred versus what was expected
  • Include all relevant details such as procedure and equipment numbers, product names and lot numbers
  • Apply the 5W2H method (What, When, Where, Who, Why if known, How much is involved, and How it was discovered)
  • Avoid speculation about causes in the initial description
  • Remember that the description should incorporate relevant records and photographs of discovered defects.
5W2HTypical questionsContains
Who?Who are the people directly concerned with the problem? Who does this? Who should be involved but wasn’t? Was someone involved who shouldn’t be?User IDs, Roles and Departments
What?What happened?Action, steps, description
When?When did the problem occur?Times, dates, place In process
Where?Where did the problem occur?Location
Why is it important?Why did we do this? What are the requirements? What is the expected condition?Justification, reason
How?How did we discover. Where in the process was it?Method, process, procedure
How Many? How Much?How many things are involved? How often did the situation happen? How much did it impact?Number, frequency

The quality of your deviation documentation begins with this initial identification. As I’ve emphasized in previous posts, the investigation/deviation report should tell a story that can be easily understood by all parties well after the event and the investigation. This narrative begins with clear identification on day one.

ElementsProblem Statement
Is used to…Understand and target a problem. Providing a scope. Evaluate any risks. Make objective decisions
Answers the following… (5W2H)What? (problem that occurred);When? (timing of what occurred); Where? (location of what occurred); Who? (persons involved/observers); Why? (why it matters, not why it occurred); How Much/Many? (volume or count); How Often? (First/only occurrence or multiple)
Contains…Object (What was affected?); Defect (What went wrong?)
Provides direction for…Escalation(s); Investigation

Going to the GEMBA: Being Where the Action Is

GEMBA-the actual place where work happens-is a cornerstone concept in quality management. When a deviation occurs, there is no substitute for being physically present at the location.

  • Observe the actual conditions and environment firsthand
  • Notice details that might not be captured in written reports
  • Understand the workflow and context surrounding the deviation
  • Gather physical evidence before it’s lost or conditions change
  • Create the opportunity for meaningful conversations with operators

Human error occurs because we are human beings. The extent of our knowledge, training, and skill has little to do with the mistakes we make. We tire, our minds wander and lose concentration, and we must navigate complex processes while satisfying competing goals and priorities – compliance, schedule adherence, efficiency, etc.

Foremost to understanding human performance is knowing that people do what makes sense to them given the available cues, tools, and focus of their attention at the time. Simply put, people come to work to do a good job – if it made sense for them to do what they did, it will make sense to others given similar conditions. The following factors significantly shape human performance and should be the focus of any human error investigation:

Physical Environment
Environment, tools, procedures, process design
Organizational Culture
Just- or blame-culture, attitude towards error
Management and Supervision
Management of personnel, training, procedures
Stress Factors
Personal, circumstantial, organizational

We do not want to see or experience human error – but when we do, it’s imperative to view it as a valuable opportunity to improve the system or process. This mindset is the heart of effective human error prevention.

Conducting an Effective GEMBA Walk for Deviations

When conducting your GEMBA walk specifically for deviation investigation:

  • Arrive with a clear purpose and structured approach
  • Observe before asking questions
  • Document observations with photos when appropriate
  • Look for environmental factors that might not appear in reports
  • Pay attention to equipment configuration and conditions
  • Note how operators interact with the process or equipment

A deviation gemba is a cross-functional team meeting that is assembled where a potential deviation event occurred. Going to the gemba and “freezing the scene” as close as possible to the time the event occurred will yield valuable clues about the environment that existed at the time – and fresher memories will provide higher quality interviews. This gemba has specific objectives:

  • Obtain a common understanding of the event: what happened, when and where it happened, who observed it, who was involved – all the facts surrounding the event. Is it a deviation?
  • Clearly describe actions taken, or that need to be taken, to contain impact from the event: product quarantine, physical or mechanical interventions, management or regulatory notifications, etc.
  • Interview involved operators: ask open-ended questions, like how the event unfolded or was discovered, from their perspective, or how the event could have been prevented, in their opinion – insights from personnel experienced with the process can prove invaluable during an investigation.

Deviation GEMBA Tips

Typically there is time between when notification of a deviation gemba goes out and when the team is scheduled to assemble. It is important to come prepared to help facilitate an efficient gemba:

  • Assemble procedures and other relevant documents and records. This will make references easier during the gemba.
  • Keep your team on-track – the gemba should end with the team having a common understanding of the event, actions taken to contain impact, and the agreed-upon next steps of the investigation.

You will gain plenty of investigational leads from your observations and interviews at the gemba – which documents to review, which personnel to interview, which equipment history to inspect, and more. The gemba is such an invaluable experience that, for many minor events, root cause and CAPA can be determined fairly easily from information gathered solely at the gemba.

Informal Rubric for Conducting a Good Deviation GEMBA

  • Describe the timeliness of the team gathering at the gemba.
  • Were all required roles and experts present?
  • Was someone leading or facilitating the gemba?
  • Describe any interviews the team performed during the gemba.
  • Did the team get sidetracked or off-topic during the gemba
  • Was the team prepared with relevant documentation or information?
  • Did the team determine batch impact and any reportability requirements?
  • Did the team satisfy the objectives of the gemba?
  • What did the team do well?
  • What could the team improve upon?

Speaking with Operators: The Power of Cognitive Interviewing

Interviewing personnel who were present when the deviation occurred requires special techniques to elicit accurate, complete information. Traditional questioning often fails to capture critical details.

Cognitive interviewing, as I outlined in my previous post on “Interviewing,” was originally created for law enforcement and later adopted during accident investigations by the National Transportation Safety Board (NTSB). This approach is based on two key principles:

  • Witnesses need time and encouragement to recall information
  • Retrieval cues enhance memory recall

How to Apply Cognitive Interviewing in Deviation Investigations

  • Mental Reinstatement: Encourage the interviewee to mentally recreate the environment and people involved
  • In-Depth Reporting: Encourage the reporting of all the details, even if it is minor or not directly related
  • Multiple Perspectives: Ask the interviewee to recall the event from others’ points of view
  • Several Orders: Ask the interviewee to recount the timeline in different ways. Beginning to end, end to beginning

Most importantly, conduct these interviews at the actual location where the deviation occurred. A key part of this is that retrieval cues access memory. This is why doing the interview on the scene (or Gemba) is so effective.

ComponentWhat It Consists of
Mental ReinstatementEncourage the interviewee to mentally recreate the environment and people involved.
In-Depth ReportingEncourage the reporting of all the details.
Multiple PerspectivesAsk the interviewee to recall the event from others’ points of view.
Several OrdersAsk the interviewee to recount the timeline in different ways.
  • Approach the Interviewee Positively:
    • Ask for the interview.
    • State the purpose of the interview.
    • Tell interviewee why he/she was selected.
    • Avoid statements that imply blame.
    • Focus on the need to capture knowledge
    • Answer questions about the interview.
    • Acknowledge and respond to concerns.
    • Manage negative emotions.
  • Apply these Four Components:
    • Use mental reinstatement.
    • Report everything.
    • Change the perspective.
    • Change the order.
  • Apply these Two Principles:
    • Witnesses need time and encouragement to recall information.
    • Retrieval cues enhance memory recall.
  • Demonstrate these Skills:
    • Recreate the original context and had them walk you through process.
    • Tell the witness to actively generate information.
    • Adopt the witness’s perspective.
    • Listen actively, do not interrupt, and pause before asking follow-up questions.
    • Ask open-ended questions.
    • Encourage the witness to use imagery.
    • Perform interview at the Gemba.
    • Follow sequence of the four major components.
    • Bring support materials.
    • Establish a connection with the witness.
    • Do Not tell them how they made the mistake.

Initial Impact Assessment: Understanding the Scope

Within the first 24 hours, a preliminary impact assessment is essential for determining the scope of the deviation and the appropriate response.

  • Apply a risk-based approach to categorize the deviation as critical, major, or minor
  • Evaluate all potentially affected products, materials, or batches
  • Consider potential effects on critical quality attributes
  • Assess possible regulatory implications
  • Determine if released products may be affected

This impact assessment is also the initial risk assessment, which will help guide the level of effort put into the deviation.

Factors to Consider in Initial Risk Assessment

  • Patient safety implications
  • Product quality impact
  • Compliance with registered specifications
  • Potential for impact on other batches or products
  • Regulatory reporting requirements
  • Level of investigation required

This initial assessment will guide subsequent decisions about quarantine, notification requirements, and the depth of investigation needed. Remember, this is a preliminary assessment that will be refined as the investigation progresses.

Immediate Actions: Containing the Issue

Once you’ve identified the deviation and assessed its potential impact, immediate actions must be taken to contain the issue and prevent further risk.

  • Quarantine potentially affected products or materials to prevent their release or further use
  • Notify key stakeholders, including quality assurance, production supervision, and relevant department heads
  • Implement temporary corrective or containment measures
  • Document the deviation in your quality management system
  • Secure relevant evidence and documentation
  • Consider whether to stop related processes

Industry best practices emphasize that you should Report the deviation in real-time. Notify QA within 24 hours and hold the GEMBA. Remember that “if you don’t document it, it didn’t happen” – thorough documentation of both the deviation and your immediate response is essential.

Affected vs Related Batches

Not every Impact is the same, so it can be helpful to have two concepts: Affected and Related.

  • Affected Batch:  Product directly impacted by the event at the time of discovery, for instance, the batch being manufactured or tested when the deviation occurred.
  • Related Batch:  Product manufactured or tested under the same conditions or parameters using the process in which the deviation occurred and determined as part of the deviation investigation process to have no impact on product quality.

Setting Up for a Successful Full Investigation

The final step in the golden day is establishing the foundation for the comprehensive investigation that will follow.

  • Assemble a cross-functional investigation team with relevant expertise
  • Define clear roles and responsibilities for team members
  • Establish a timeline for the investigation (remembering the 30-day guideline)
  • Identify additional data or evidence that needs to be collected
  • Plan for any necessary testing or analysis
  • Schedule follow-up interviews or observations

In my post on handling deviations, I emphasized that you must perform a time-sensitive and thorough investigation within 30 days. The groundwork laid during the golden day will make this timeline achievable while maintaining investigation quality.

Planning for Root Cause Analysis

During this setup phase, you should also begin planning which root cause analysis tools might be most appropriate for your investigation. Select tools based on the event complexity and the number of potential root causes and when “human error” appears to be involved, prepare to dig deeper as this is rarely the true root cause

Identifying Phase of your Investigation

IfThen you are at
The problem is not understood. Boundaries have not been set. There could be more than one problemProblem Understanding
Data needs to be collected. There are questions about frequency or occurrence. You have not had interviewsData Collection
Data has been collected but not analyszedData Analysis
The root cause needs to be determined from the analyzed dataIdentify Root Cause
Root Cause Analysis Tools Chart body { font-family: Arial, sans-serif; line-height: 1.6; margin: 20px; } table { border-collapse: collapse; width: 100%; margin-bottom: 20px; } th, td { border: 1px solid ; padding: 8px 12px; vertical-align: top; } th { background-color: ; font-weight: bold; text-align: left; } tr:nth-child(even) { background-color: ; } .purpose-cell { font-weight: bold; } h1 { text-align: center; color: ; } ul { margin: 0; padding-left: 20px; }

Root Cause Analysis Tools Chart

Purpose Tool Description
Problem Understanding Process Map A picture of the separate steps of a process in sequential order, including:
  • materials or services entering or leaving the process (inputs and outputs)
  • decisions that must be made
  • people who become involved
  • time involved at each step, and/or
  • process measurements.
Critical Incident Technique (CIT) A process used for collecting direct observations of human behavior that
  • have critical significance, and
  • meet methodically defined criteria.
Comparative Analysis A technique that focuses a problem-solving team on a problem. It compares one or more elements of a problem or process to evaluate elements that are similar or different (e.g. comparing a standard process to a failing process).
Performance Matrix A tool that describes the participation by various roles in completing tasks or deliverables for a project or business process.
Note: It is especially useful in clarifying roles and responsibilities in cross-functional/departmental positions.
5W2H Analysis An approach that defines a problem and its underlying contributing factors by systematically asking questions related to who, what, when, where, why, how, and how much/often.
Data Collection Surveys A technique for gathering data from a targeted audience based on a standard set of criteria.
Check Sheets A technique to compile data or observations to detect and show trends/patterns.
Cognitive Interview An interview technique used by investigators to help the interviewee recall specific memories from a specific event.
KNOT Chart A data collection and classification tool to organize data based on what is
  • Known
  • Need to know
  • Opinion, and
  • Think we know.
Data Analysis Pareto Chart A technique that focuses efforts on problems offering the greatest potential for improvement.
Histogram A tool that
  • summarizes data collected over a period of time, and
  • graphically presents frequency distribution.
Scatter Chart A tool to study possible relationships between changes in two different sets of variables.
Run Chart A tool that captures study data for trends/patterns over time.
Affinity Diagram A technique for brainstorming and summarizing ideas into natural groupings to understand a problem.
Root Cause Analysis Interrelationship Digraphs A tool to identify, analyze, and classify cause and effect relationships among issues so that drivers become part of an effective solution.
Why-Why A technique that allows one to explore the cause-and-effect relationships of a particular problem by asking why; drilling down through the underlying contributing causes to identify root cause.
Is/Is Not A technique that guides the search for causes of a problem by isolating the who, what, when, where, and how of an event. It narrows the investigation to factors that have an impact and eliminates factors that do not have an impact. By comparing what the problem is with what the problem is not, we can see what is distinctive about a problem which leads to possible causes.
Structured Brainstorming A technique to identify, explore, and display the
  • factors within each root cause category that may be affecting the problem/issue, and/or
  • effect being studied through this structured idea-generating tool.
Cause and Effect Diagram (Ishikawa/Fishbone) A tool to display potential causes of an event based on root cause categories defined by structured brainstorming using this tool as a visual aid.
Causal Factor Charting A tool to
  • analyze human factors and behaviors that contribute to errors, and
  • identify behavior-influencing factors and gaps.
Other Tools Prioritization Matrix A tool to systematically compare choices through applying and weighting criteria.
Control Chart A tool to monitor process performance over time by studying its variation and source.
Process Capability A tool to determine whether a process is capable of meeting requirements or specifications.

Making the Most of Your Golden Day

The first 24 hours after discovering a deviation represent a unique opportunity that should not be wasted. By following the structured approach outlined in this post-identifying the problem clearly, going to the GEMBA, interviewing operators using cognitive techniques, conducting an initial impact assessment, taking immediate containment actions, and setting up for the full investigation-you maximize the value of this golden day.

Remember that excellent deviation management is directly linked to product quality, patient safety, and regulatory compliance. Each well-managed deviation is an opportunity to strengthen your quality system.

I encourage you to assess your current approach to the first 24 hours of deviation management. Are you capturing the full value of this golden day, or are you letting critical information slip away? Implement these strategies, train your team on proper deviation triage, and transform your deviation response from reactive to proactive.

Your deviation management effectiveness doesn’t begin when the investigation report is initiated-it begins the moment a deviation is discovered. Make that golden day count.

Leaks in Single-Use Manufacturing: A Critical Challenge in Bioprocessing

The recent FDA warning letter to Sanofi highlights a critical issue in biopharmaceutical manufacturing: the integrity of single-use systems (SUS) and the prevention of leaks. This incident serves as a stark reminder of the importance of robust control strategies in bioprocessing, particularly when it comes to high-pressure events and product leakage.

The Sanofi Case: A Cautionary Tale

In January 2025, the FDA issued a warning letter to Sanofi regarding their Genzyme facility in Framingham, Massachusetts. The letter cited significant deviations from Current Good Manufacturing Practice (CGMP) for active pharmaceutical ingredients (APIs). One of the key issues highlighted was the company’s failure to address high-pressure events that resulted in in-process product leakage.

Sanofi had been using an unapproved workaround, replacing shipping bags to control the frequency of high-pressure and in-process leaking events. This deviation was not properly documented or the solution validated.

A proper control strategy in this context would likely involve:

  1. A validated process modification to prevent or mitigate high-pressure events
  2. Engineering controls or equipment upgrades to handle pressure fluctuations safely
  3. Improved monitoring and alarm systems to detect potential high-pressure situations
  4. Validated procedures for responding to high-pressure events if they occur
  5. A comprehensive risk assessment and mitigation plan related to pressure control in the manufacturing process

The Importance of Leak Prevention in Single-Use Systems

Single-use technologies have become increasingly prevalent in biopharmaceutical manufacturing due to their numerous advantages, including reduced risk of cross-contamination and increased flexibility. For all this to work, the integrity of these systems is paramount to ensure product quality and patient safety.

Leaks in single-use bags can lead to:

  1. Product loss
  2. Contamination risks
  3. Costly production delays
  4. Regulatory non-compliance

Strategies for Leak Prevention and Detection

To address the challenges posed by leaks in single-use systems, manufacturers need to consider implementing a comprehensive control strategy. Here are some key approaches:

1. Integrity Testing

Implementing robust integrity testing protocols is crucial. Two non-destructive testing methods are particularly suitable for single-use systems:

  • Pressure-based tests: These tests can detect leaks by inflating components with air to a defined pressure. They can identify defects as small as 10 µm in flat bags and 100 µm in large-volume 3D systems.
  • Trace-gas-based tests: Typically using helium, these tests offer the highest level of sterility assurance and can detect even smaller defects.

2. Risk-Based Quality by Design (QbD) Approach

Single-use components and the manufacturing process must be established and maintained using a risk-based QbD approach that can help identify potential failure points and implement appropriate controls. This should include:

  • Comprehensive risk assessments
  • Validated procedures for responding to high-pressure events
  • Improved monitoring and alarm systems

Validated Process Modifications

Instead of using unapproved workarounds, companies need to develop and validate process modifications to prevent or mitigate high-pressure events. One thing to be extra cautious about is the worry of a temporary solution becoming a permanent one.

Conclusion

The Sanofi warning letter serves as a crucial reminder of the importance of maintaining the integrity of single-use systems in biopharmaceutical manufacturing. By implementing comprehensive control strategies, including robust integrity testing, risk-based approaches, and validated process modifications, manufacturers can significantly reduce the risk of leaks and ensure compliance with cGMP standards.

As the industry continues to embrace single-use technologies, it’s imperative that we remain vigilant in addressing these challenges to maintain product quality, patient safety, and regulatory compliance.

Failure to Investigate Critical Deviations: A Cautionary Tale from Sanofi’s FDA Warning Letter

The recent FDA warning letter issued to Sanofi on January 15, 2025 highlights a critical issue that continues to plague pharmaceutical manufacturers – inadequate investigation of deviations. Specifically, the FDA cited Sanofi for “failure to thoroughly investigate any unexplained discrepancy or failure of a batch or any of its components to meet any of its specifications, whether or not the batch has already been distributed.”

This observation underscores the importance of robust deviation investigation and CAPA (Corrective and Preventive Action) systems.

The Importance of Thorough Investigations

Investigating deviations is not just a regulatory requirement – it’s a critical part of ensuring product quality and patient safety. The objective of an investigation is not merely to perform the investigation, but to improve the reliability of our manufacturing operations, the ultimate objective being increased quality and availability of those regulated healthcare products.

When companies fail to thoroughly investigate deviations, they miss opportunities to:

  1. Identify root causes of quality issues
  2. Implement effective corrective actions
  3. Prevent recurrence of similar problems
  4. Improve overall manufacturing processes and controls

Common Pitfalls in Deviation Investigations

Some common reasons why deviation investigations fall short include:

  • Lack of trained, competent investigators
  • Inadequate time and resources allocated to investigations
  • Pressure to close investigations quickly
  • Failure to look beyond the immediate symptoms to identify true root causes
  • Over-reliance on “human error” as a root cause
  • Poor documentation of investigation activities and rationale

Building Better Investigation and CAPA Processes

To overcome these challenges and build more effective investigation and CAPA systems, companies should consider the following approaches:

1. Develop Investigator Competencies

Having competent investigators is crucial. Companies should:

  • Define required competencies for investigators
  • Provide comprehensive training on investigation techniques and tools
  • Implement mentoring programs for new investigators
  • Regularly assess and refresh investigator skills

2. Implement a Risk-Based Approach

Not all deviations require the same level of investigation. Using a risk-based approach allows companies to:

  • Prioritize critical deviations for in-depth investigation
  • Allocate appropriate resources based on potential impact
  • Ensure thorough investigations for high-risk issues

3. Use Structured Investigation Methods

Adopting structured investigation methods helps ensure consistency and thoroughness. Some useful tools include:

  • Fishbone diagrams for brainstorming potential causes
  • Why-Why analysis for drilling down to root causes
  • Fault tree analysis for complex issues
  • Timeline analysis to understand the sequence of events

4. Look Beyond Human Error

Human error is not a root cause. Instead of stopping at “operator error”, investigators should dig deeper to understand:

  • Why the error occurred
  • What system or process factors contributed to the error
  • How similar errors can be prevented in the future

5. Improve Documentation Practices

Thorough documentation is essential for demonstrating the adequacy of investigations to regulators. Key elements include:

  • Clear description of the deviation
  • Investigation steps taken
  • Data and evidence collected
  • Root cause analysis
  • Rationale for conclusions
  • Corrective and preventive actions

6. Implement Effective CAPAs

The investigation is only the first step – implementing effective corrective and preventive actions is crucial. Companies should:

  • Ensure CAPAs directly address identified root causes
  • Consider both short-term corrections and long-term preventive measures
  • Assess potential risks of proposed CAPAs
  • Establish clear timelines and accountability for CAPA implementation
  • Conduct effectiveness checks to verify CAPA impact

7. Foster a Culture of Quality

Management plays a critical role in creating an environment that supports thorough investigations.

  • Providing adequate time and resources for investigations
  • Encouraging open reporting of deviations without fear of blame
  • Recognizing and rewarding thorough investigation practices
  • Leading by example in prioritizing quality and patient safety

Common Pitfalls in Investigating Microbiological Contamination Events

When investigating microbiological contamination events there are often several pitfalls that can hinder the effectiveness of their investigations.

Inadequate Root Cause Analysis

One of the most significant pitfalls is failing to conduct a thorough root cause analysis. Investigators may be tempted to attribute contamination to superficial causes like “human error” without digging deeper into systemic issues. This shallow approach often leads to ineffective corrective actions that fail to prevent recurrence. Build in safeguards to avoid jumping to conclusion.

Overlooking Environmental Factors

Investigators sometimes neglect to consider the broader environmental context of contamination events. Factors such as air handling systems, water quality, and even compressed air can harbor contaminants. Failing to examine these potential sources may result in missed opportunities for identifying the true origin of contamination.

Insufficient Microbial Identification

Relying solely on phenotypic identification methods can lead to misidentification of contaminants. Phenotypic results can incorrectly point to laboratory contamination, while genotypic testing revealed a production-related issue. Using a combination of identification methods, including genotypic techniques, can provide more accurate and actionable results.

Premature Conclusion of Investigations

Pressure to close investigations quickly can lead to premature conclusions. This was evident in the Sanofi warning letter, where the FDA noted that investigations into critical deviations, including multiple microbiological contamination events, were inadequate. Rushing the process can result in overlooking important details and failing to implement effective corrective actions.

Failure to Consider Cross-Contamination

Investigators may not always consider the possibility of cross-contamination between products or areas within the facility. The presence of drug-resistant microbial contaminants, as observed in some studies, underscores the importance of examining potential routes of transmission and implementing strict hygiene procedures.

Inadequate Documentation

Poor documentation of investigation activities and rationale can undermine the credibility of findings and make it difficult to justify conclusions to regulators. The FDA’s warning letter to Sanofi highlighted this issue, noting that not all investigational activities were documented.

Neglecting Trending and Data Analysis

Failing to analyze contamination events in the context of historical data and trends can lead to missed patterns and recurring issues. Establishing and maintaining a comprehensive microflora database is essential for effective contamination control strategies and can provide valuable insights for investigations.

Insufficient Training of Investigators

Lack of properly trained and competent investigators can significantly impact the quality of contamination investigations. Ensuring that personnel have the necessary skills and knowledge to conduct thorough, science-based investigations is crucial for identifying true root causes and implementing effective corrective actions.

Conclusion

The Sanofi warning letter serves as a reminder of the critical importance of thorough deviation investigations in pharmaceutical manufacturing. By implementing robust investigation and CAPA processes, companies can not only avoid regulatory action but also drive continuous improvement in their operations. This requires ongoing commitment to developing investigator competencies, using structured methods, looking beyond superficial causes, and fostering a culture that values quality and learning from deviations.

As the industry continues to evolve, effective investigation practices will be essential for ensuring product quality, patient safety, and regulatory compliance. By viewing deviations not as failures but as opportunities for improvement, pharmaceutical manufacturers can build more resilient and reliable production systems.

When Your Deviation/CAPA Program Runs Smoothly Expect a Period of Increased Deviations

One reason to invest in the CAPA program is that you will see fewer deviations over time as you fix issues. That is true, but it takes time. Yes, you’ve dealt with your backlog, improved your investigations, integrated risk management, built problem-solving into your processes, and are truly driving preventative actions. And yet your deviations remain high. What is going on?

It’s because you are getting good at things and working your way through the bolus of problems. Here’s what is going on:

  1. Improved Detection and Reporting: As a CAPA program matures, it enhances an organization’s ability to detect and report deviations. Employees become more adept at identifying and documenting deviations due to better training and awareness, leading to a temporary increase in reported deviations.
  2. Thorough Root Cause Analysis: A well-functioning CAPA program emphasizes thorough root cause analysis. This process often uncovers previously unnoticed issues and identifies additional deviations that need to be addressed.
  3. Increased Scrutiny and Compliance: As the CAPA program gains momentum, management usually scrutinizes it more, which can lead to the discovery of more deviations. Organizations become more vigilant in maintaining compliance, resulting in more deviations being reported and documented.
  4. Systematic Process Improvements: The CAPA process often leads to systemic improvements in processes and procedures. As these improvements are implemented, any deviations from the new standards are more likely to be identified and recorded, contributing to an initial rise in deviation reports.
  5. Cultural Shift Towards Quality: A successful CAPA program fosters a culture of quality and continuous improvement. Employees may feel more empowered and responsible for reporting deviations, increasing the number of deviations captured.

Expect these changes and build your metric program around them. Avoid introducing a metric like a reduction in deviations in the first year, as such a metric will drive bad behavior. Instead, focus on metrics that demonstrate the success of the changes and, over time, introduce metrics to see the overall benefits.

Best Ways to Address a Deviation Backlog

A deviation backlog in a regulated industry, such as pharmaceuticals, can pose significant risks to compliance, product quality, and overall operational efficiency. Addressing this backlog effectively requires a structured approach that prioritizes risk management, resource allocation, and continuous improvement.

You need to do two things first:

Prioritize Urgent Requests

  • Identify Critical Issues: Focus on resolving high-priority and time-sensitive deviations first to drive compliance.

Isolate and Organize

  • Separate Backlog from Ongoing Deviations: Create distinct queues for backlog deviations and new deviations to streamline management.
  • Create a Backlog Team: Assign a dedicated team to tackle the backlog, ensuring that regular support operations continue smoothly.

From there, you can then proceed into the next steps to tackle a deviation backlog:

1. Prioritize Based on Risk

Not all deviations have the same impact. Prioritizing the backlog based on the severity and risk part of each deviation is crucial. This involves:

  • Assessing Severity: Evaluate the potential impact of each deviation on product quality, patient safety, and regulatory compliance. Ideally you already classify deviations into categories such as minor, moderate, and major. based on those you will need to additional work to prioritize the backlog.
  • Risk-Based Approach: Focus on resolving high-risk deviations first to mitigate the most critical issues promptly.

2. Allocate Adequate Resources

Addressing a backlog efficiently often requires additional resources. Consider the following actions:

  • Increase Staffing: Temporarily augment your team with additional personnel or external consultants to handle the increased workload.
  • Specialized Teams: Form dedicated teams to focus solely on backlog reduction, ensuring that regular operations are not disrupted.

3. Improve and Make Robust Deviation Management Processes

A systematic approach to deviation management helps prevent backlogs from recurring. Key steps include:

  • Root Cause Analysis (RCA): Conduct thorough investigations to identify the underlying causes of deviations.
  • Corrective and Preventive Actions (CAPA): Develop and implement CAPA plans to address root causes and prevent future deviations. Ensure these plans are reviewed and approved by relevant stakeholders.

4. Regular Monitoring and Review

Continuous monitoring and regular reviews are essential to keep the backlog under control:

  • Track Progress: Use metrics and key performance indicators (KPIs) to monitor the progress of backlog reduction efforts. Tools like burndown charts can be helpful.
  • Periodic Reviews: Conduct regular review meetings to assess the status of the backlog and make necessary adjustments to the plan.

5. Enhance Deviation Management Systems

Improving your deviation management system can prevent future backlogs and streamline the resolution process:

  • Automation and Software Tools: Implement a eQMS or evaluate and improve the current one.
  • Training and Education: Ensure that all employees are well-trained in deviation management processes and understand the importance of timely reporting and resolution.

6. Foster a Culture of Continuous Improvement

Promote a culture that values continuous improvement and proactive problem-solving:

  • Encourage Reporting: Create an environment where employees feel comfortable reporting deviations without fear of retribution.
  • Learn from Deviations: Analyze deviation trends to identify areas for process improvement and implement changes to prevent recurrence.

7. Set Clear Goals and Deadlines

Establish clear goals and deadlines for backlog reduction:

  • Set Due Dates: Assign due dates for resolving backlog items to ensure timely action. Items that exceed their due dates should be reviewed and either expedited or reassessed for relevance.
  • Regular Updates: Keep all stakeholders informed about the progress and any changes to the plan through regular updates and communication.

Conclusion

Addressing a deviation backlog effectively requires a combination of prioritization, resource allocation, robust processes, continuous monitoring, and a culture of improvement. By implementing these strategies, organizations can reduce their backlog, improve compliance, and enhance overall product quality and safety.